UNIVERSITY OF GOTHENBURG

A Reliable Generic Game Server

Niklas Landin
Richard Pannek
Mattias Pettersson

Jonatan Palsson

Abstract

This is the abstract!

Table of Contents

|Chapter 1 Introduction| . . 1
[1.1 Background | 2
1. Purposelo e 3
|I1.3 Challenges in developing the prototype|. 4
|I1.4 Limitations of the prototypel. 4
CE _Methodl o oo e e 5

|Chapter 2 Theory behind the GGS | . 6
2.1 Design of the GGS system| L 6
2.2 Performancel. 8
2.3 Choosing a network protocol] oo oo 8

3T _UDPl. . . o 8
E32 TCPl . . o o e e 9

20 T 0 = 9
R34 The GGS Protocoll oo 9

1 i GOl . 9

25 Fault tolerancel L 9
2.6 Availability] 10
... 10
[2.7.1 Load balancing| o 11
2.7.2 UUIDI . . . e e 12

2.8 Security |. e 13
2.9 Game Development Language in a Virtual Machine|. 13
[2.9.1 JavaScript|. 13
[2.9.2 Other languages| o 14
[2.9.3 JavaScript|. 14
[2.9.4 Other languages| L 14

0 S 14
[2.10.1 JavaScript|. oL 15
[2.10.2 Other languages| 15

|Chapter 3 Implementation of a prototype|] 16
3.1 Overview of the prototypel 16
3.2 The usage of Erlang in the GGS| o oo oL 18

iii

0 TABLE OF CONTENTS

[3.2.1 Short introduction to the Erlang syntax|, 19
3.3 The modular structure of the GGS prototype| 20
[3.3.1 The dispatcher modulef. o oo 20
[3.3.2 The player module| o o 21
[3.3.3 The protocol parser module| o0 000, 21
3.3.4 The coordinator modulel o oo 22
B35 Thetablemoduld. 23
[3.3.6 The game virtual machine modulef 23
8.3 7 The database module| Lo 24
B.4 Communication with the GDL VM| 25
[3.4.1 Exposing Erlang tunctionality to the GDL VM |. 25
3.5 Techniques for ensuring reliability | oL 26
[3.5.1 Supervisor structure |. 27
[3.5.2 Redundancy|. 28
[3.5.3 Hot code replacement| L L Lo 28
3.6 Software testing]. L 29
[3.6.1 Unit testing] 29
[3.6.2 Automated test case generation|. L. 29
BT Casestudies 30
[3.7.1 Typical communication| Lo 30
[3.7.2 Initialization and life cycle of a game|.o 31
[3.7.3 A GGS server application in JavaScript| 0L 33

|Chapter 4 Problems of implementation| 34

4.1 JavaScript engine| L e 34
[4.1.1 erlang js|o 34
4.1.2 erlv8l e 34

4.2 Protocol design| 35

|Chapter 5 Results and discussion| 36

BI_Statisticd o oo o 36
.2 Future improvements|. L 38
B.21 Distributionl. 38
(.22 Performancd 38
(.23 Documentation] 39

|IChapter 6 Conclusion|. 40
... 40

iv

1 Introduction

Online gaming, and computer gaming in general has become an important part in many peoples
day-to day lives. A few years ago, computer games were not at all as popular as they are today.
With the advances in computer graphics and computer hardware today’s games are much more
sophisticated then they were in the days of NetHack, Zork, or Pacman.

The early computer games featured simple, or no graphics at all NetHack| [2011]. The games
often took place in a textual world, leaving the task of picturing the world up to the player.
Multiplayer games were not as common as they are today, whereas most games today are expected
to have a multiplayer mode, most early games did not.

Since these early games, the gaming industry have become much more influential in many ways.
Many advanced in computer hardware are thought to come from pressure from the computer game
industry. More powerful games require more powerful, and more easily available hardware. Due
to the high entertainment value of modern computer games, gaming has become a huge industry,
where large amounts of money are invested. The gaming industry is today, in some places even
larger than the motion picture industry. |Association| [2011], Nash Information Services| [2011]

Due to the increasing importance of computer gaming, more focus should be spent on improving
the quality of the gaming service. As more and more computer games are gaining multiplayer
capabilities, the demands for multiplayer networking software rises. This thesis is about techniques
for improving the quality of this networking software.

The Reliable Generic Game Server, hereafter known as the GGS, is a computer program de-
signed to host network games on one or more server computers. Hosting, in a network software
setting, means allowing client software connect to the server software, for the purpose of utilizing
services provided by the server. The GGS software provides games as a service, and the clients
connecting to the GGS can play these games on the GGS.

The idea of game servers is not new, network games have been played for decades. Early,
popular examples of network games include the Quake series, or the Doom games. Newer examples
of network games include World of Warcraft, and Counter-Strike. The difference between the GGS
and the servers for these games is that the servers for Doom, Quake, and the others listed, were
designed with these specific games in mind.

What GGS does is to provide a generic framework for developing network games. The frame-
work is generic in the sense that it is not bound to a specific game. There are many different
types of games, some are inherently more time sensitive than others, strategy games are examples
of games which are not very sensitive to time delays, first-person shooters however, can be very
sensitive.

The generic nature of the GGS allows the creation of many different types of games, the
motivation behind this is to remove the necessity of writing new game servers when developing
new games.

The GGS is in addition to being generic, also reliable in the sense that the gaming service

provided is consistent and available. A consistent and available server is a server that handles

1 CHAPTER 1. INTRODUCTION

hardware failures and software failures gracefully. In the event of a component breaking within the

GGS, the error is handled by fault recovery processes, thereby creating a more reliable system.

1.1 Background

The game industry is a quickly growing industry with high revenues and many clever computer
scientists. Strangely enough their customers often experience long downtimes due to maintaining
or because of problems with the servers Terdiman| [2006]. This is a problem that has existed and
been resolved in other industries. The telecom industry, for instance, has already found solutions
to similar problems.

A common figure often used in telecoms is that of the nine nines, referring to 99.999999999%
of availability |Armstrong] [2003], or roughly 15ms downtime in a year. The level of instability and
bad fault tolerance seen in the game server industry would not have been accepted in the telecom
industry. This level of instability should not be accepted in the game server industry either. An
unavailable phone system could potentially have life threatening consequences, leaving the public
unable to contact emergency services. The same cannot be said about an unavailable game server.
The statement that game servers are less important than phone systems are not a reason not to
draw wisdom from what the telecoms have already learned.

Moving back to the gaming industry. The main reason to develop reliable servers is a higher
revenue, do archive this it is important for game companies to expand their customer base. Reliable
game servers will create a good image of the company. In general the downtime of game servers is
much higher than the downtime of telecom systems evenso the overall structure of the systems is
similar in many ways. It should be possible to learn and reuse solutions from the telecom systems
to improve game servers.

In the current state game servers are developed on a per-game basis, often this seems like a bad
solution. Developers of multiplayer games need to understand network programming, which above
all be a problem for small companies and indipendent game developers who often lack expertise in
that field. A way to help them in the competition would be to offer a generic game server which
gives them a environment in which they can implement their game in. This approach would not
only make it easier to develop network games, it would also allow games in different programming
languages to be implemented using the same server.

Some key factors to the development of the GGS have been isolated. Many of these are found
in the telecom sector too. The factors are scalability, fault tolerance and a generic nature. These
terms are defined below.

Scalability (see in computer science is a large topic and is commonly divided into sub-
fields, two of which are structural scalability and load scalability Bondi [2000]. These two issues
are addressed in this thesis. Structural scalability means expanding an architecture, e.g. adding
nodes to a system without requiring modification of the system. Load scalability means using the
available resources in a way which allows handling increasing load, e.g more users, gracefully.

Fault tolerance (see [2.5) is used to raise the level of dependability in a system, so that the
dependability is high even in presence of errors. Dependability is the statistical probability of
the system functioning as intended at a given point in time. Fault tolerance is the property of

a system always to follow a specification, even in the presence of errors. The specification could

1 CHAPTER 1. INTRODUCTION

define error handling procedures which activate when an error occurs. This means that a fault
tolerant, dependable system, will have a very high probability of functioning at a given point in
time, and is exactly what is desired. |Gértner| [1999]

A generic (see game server has to be able to run different client-server network games
regardless of the platform the clients are running on. It runs network games of different type. A
very rough separation of games is real time games and turn based games.

The server behaves in a way similar to an application server, but is designed to help running
games. An application server provides processing ability and time, therefore it is different from a
file- or print-server, which only serves resources to the clients.

The most common type of application servers are web servers, where you run a web application
within the server. The application server provides an environment and interfaces to the outer world,
in which applications run. Hooks and helpers are provided to use the resources of the server. Some
examples for web application servers are the Glassfish server which allows running applications
written in Java or the Google App Engine where you can run applications written in Python or
some language which runs in the Java Virtual Machine. An example of an application server not
powering web applications, but instead regular business logic, is Oracle’s TUXEDO application
server, which can be used to run applications written in COBOL, C++ and other languages.

A database server can also be seen as an application server. Scripts, for example SQL queries
or JavaScript, are sent to the server, which runs them and returns the evaluated data to the clients.

One purpose of this thesis is to investigate how one could make a game server as generic as
possible. Some important helpers are discussed, such as abstraction of the network layer, data
store and game specific features.

A prototype has been developed in order to aid the discussion of the theoretical parts of the
GGS. The prototype does not feature all the characteristics described in this thesis. A selection
has been made among the features and the most important ones have been implemented either
full or in part in the prototype.

The choice of the implementation language for the prototype of the GGS was made with in-
spiration from the telecom industry. The Erlang language was developed by the swedish telecom
company Ericsson to develop highly available and dependable telecom switches. One of the most re-
liable systems ever developed by Ericsson, the AXD301 was developed using Erlang. The AXD301
has possibly the largest code base even written in a functional language |Armstrong, 2003]. The
same language is used to develop the prototype of the GGS. The usage of Erlang in the GGS is

discussed in further detail in section 3.2

1.2 Purpose

The purpose of creating a generic and fault tolerant game server is to provide a good framework
for the development of many different types of games. Allowing the system to scale up and down is
a powerful way to maximize the usage of physical resources. By scaling up to new machines when
load increases, and scaling down from machines when load decreases costs and energy consumption
can be optimized.

Fault tolerance is important for the GGS to create a reliable service. The purpose of a reliable

game server is to provide a consistent service to people using the server. Going back to the telecom

1 CHAPTER 1. INTRODUCTION

example, the purpose of creating a reliable telecom system is to allow calls, possibly emergency
calls, at any time. Should the telecom network be unavailable at any time, emergency services
may become unavailable, furthermore the consumer’s image of the telecom system degrades.
Returning to the game industry, emergency services will not be contacted using a game server,
however an unavailable server will degrade the consumer’s image of the system. Consider an
online casino company. The online casino company’s servers must be available at all times to allow
customers to play. If the servers are unavailable customers cannot play and the company loses

money. In this scenario an unavailable server can be compared to a closed real-world casino.

1.3 Challenges in developing the prototype

The word generic in the name of the GGS implies that the system is able to run a very broad
range of different code, for instance code written in different programming languages or code
written for a broad range of different game types. To support this, a virtual machine (VM) for
each game development language (hereafter GDL for brevity) is used.

No hard limit has been set on which languages can be used for game development on the GGS,
but there are several factors which should be taken into consideration when deciding the feasibility

of a language:
e How well it integrates with Erlang, which is used in the core the GGS system?
e How easy it is to send messages from the GGS to the GDL VM?
e How easy it is to send messages from the GDL VM to the GGS?
e [s it possible to sandbox every game with a context or something comperable?

Internally the GDL VM needs to interface with the GGS to make use of the helpers and tools that
the GGS provides. Thus an internal API has to be designed to make the GDL VM to be able to
interacti with the GGS. This API is ideally completely independent of the GDL, and reusable for
any GDL.

The communication with the gaming clients has to take place with help a protocol. Ideally a
standard protocol should be used in order to shorten the learning curve for developers and also
make the system as a whole less obscure. A major challenge during this project is to decide whether
an existing protocol can be used, and if not, how a new protocol can be designed which performs
technically as desired, while still being familiar enough to existing developers.

A great deal of work is devoted to make the GGS reliable. This includes ensuring that the
system scales well and to make sure it is fault tolerant. In order to facilitate scalability the GGS

needs a storage platform which is accessible and consistent.

1.4 Limitations of the prototype

The implementation of the GGS protocol together with storage possibilities, server capacity,
and game language support imposes some limitations on the project. To get a functional prototype
some limits must be set on the types games that can be played on the prototype.

The UDP protocol is not supported for communication between client and server. The TCP

protocol was chosen in favor of UDP, due to the fact that the implementation process using TCP

1 CHAPTER 1. INTRODUCTION

was faster and easier than if UDP would have been used. UDP is generally considered to be faster
than TCP for the transfer of game (and other) related data, this is discussed in more depth in
on page 8 In short, the decision of using TCP means that games that requires a high speed
protocol will not be supported by the GGS prototype. Another limitation necessary to set on
the system is the possibility to have huge game worlds due to the implementation of the scaling
mechanism in the prototype.

In real time games all players are playing together at the same time. Latency is a huge problem
in real time games, a typical round trip time for such games are one of 50 to 150ms and everything
above 200ms is reported to be intolerable (see [Farber| [2002]). Latency sensitive games include
most of the first person shooters with multiplayer ability, for example Counter Strike or massively
multiplayer online role playing games (MMORPGS), for example World of Warcraft.

In turn based games each player has to wait for their turn. Latency is not a problem since the
gameplay does not require fast interactions among the players, long round trip times will not be
noticed. Examples of turn based games include board and card games, as well as multiplayer games
like Jeopardy. Both game types have varying difficulties and needs when it comes to implementing
them, a Generic Game Server should address all of them and help the developer to accomplish his
goal.

Due to the limited capability of threading in many GDL VMs, the GGS prototype will not
support MMORPGs.

The implementation of the GGS described in this thesis is only a small prototype and tests
will be performed on simple games like pong or chess, thus there is no need to implement more
advanced features in the system. Note that these limitations only apply for the prototype of the
project, and that further developments to the GGS could be to implement these features.

1.5 Method

A prototype was developed early on in the project to carry out experiments. Using this pro-
totype, the system was divided into modules. A demand specification was created, using this
specification, the modules were easily identifiable.

The first prototype of the GGS consisted of simple modules, however, due to the separation
of concerns among the modules, they were easily independently modified and improved. Once the
basic structure of the GGS had been established, the first prototype was removed, remaining was
the structure of the modules and the internal flow of the application. This could be seen as an
iterative workflow, with the first prototype being the first iteration. The second iteration later
became the final result of the GGS.

The layout of the GGS is both layered and modular. The first layer handles the most primitive
data and produces a higher level representation of the data, passing it along to different modules
of the GGS. The modular structure of the GGS plays an important role in making the system fault
tolerant. The approach to fault tolerance is by replication, and restarting the faulting modules
with the last known good data.

An informal specification and list of requirements of the system was outlined early on in the
project. Usability goals for developers were set. During the project several demo applications were

constructed, by constructing these applications, the usability goals were enforced.

2 Theory behind the GGS

In this chapter, the theory behind the techniques used in the GGS are discussed. Performance
issues and the measuring of performance is discussed. Benchmarking techniques are discussed. The
options when choosing network protocols are given, along with a discussion of each alternative.

Finally, an overview of scalability, fault tolerance and availability are presented.

2.1 Design of the GGS system

The GGS is modeled after a real world system performing much of the same duties as the
GGS. This is common practice |[Armstrong, [2011] in the computer software world to understand
complex problems more easily. While there may not always be a real world example of a system
performing the exact duties of the system being modeled in the computer, it is often easier to
create and analyze requirements for real world systems and processes than systems existing solely
in virtual form in a computer. The requirements and limitations imposed on the real-world system
can, using the proper tools, be transferred in to the software.

The real world system chosen for the GGS is a “Chess club” - a building where chess players
can meet and play chess. Since a real-world scenario is readily available, and to such a large extent
resembles the computer software required for the GGS, the next step in developing the GGS system
is to duplicate this real world scenario in a software setting.

Some requirements, limitations and additions were made to the chess club system, so that the
system would more easily and efficiently be replicated in a software setting.

In the text below, two examples will be presented. On example is that of a real-world chess

club, in which players meet to play chess against each other, the other example is the GGS, and

how it corresponds to this chess club. In figure 2.1 on the next page| a graphical representation

for the chess club is presented. The club is seen from above. The outermost box represents the
building. In the GGS setting, the building would represent one instance of the GGS. Several
buildings linked together would represent a cluster of GGS instances. In order for a player (the P
symbol in the graphic) to enter the theoretical chess club, the player must pass by the entrance.
By having each player pass by the entrance, a tally can be kept, ensuring that there are not too
many players within the building. In the GGS setting, too many players entering would mean too
many connections have been accepted by the GGS system, and that the structure of the system
thus must be modified, adding additional servers.

Once a player has been allowed in to the chess club the player is greeted by the host of the
chess club, in the GGS setting represented by the Coordinator, and is seated by a table. The
coordinator keeps track of all the players in the building, and all moves made by the players. The
information available to the coordinator means that cheating can be monitored and book keeping
can be performed by this entity.

A player can only move the figures on her table in the chess club thus every game is isolated to
a table, just as expected. This means that communication during a game only has to pass by the

players of that particular game and the coordinator, making sure that no cheating takes place.

2 CHAPTER 2. THEORY BEHIND THE GGS

®

®

Coordinator
Entrance

® ®

Figure 2.1: The layout of a physical “Chess club” with two players (P) sitting by each chess table
(Table), a coordinator keeps track of all movements of players in the building. A player has to pass
by the entrance to enter or exit the building. The building is represented by the outermost box.

This isolation of the games play an important part in many properties of the GGS, the isolation
means that games can for example be transferred among different chess clubs. Furthermore, if
cheating takes place, corruption can only occur in the particular table where it was found and
cannot spread.

Moving chess players from one location to another is one alteration made to the real world
chess club system to make the system more appropriate for a software setting. Allowing games
to be transferred is not an attribute usually desired in a real world chess club, where transferring
players would mean moving the players from one building to another. In the software setting,
moving players means moving the game processes from one system to another, perhaps to balance

the system load. This transfer of players can occur transparently, without notifying the players.

The simplified life cycle of a game in the GGS can be viewed using algorithm [2.1 on the following]
To make this life cycle as efficient and useful as possible the scalability, fault tolerance and

generic traits are being added to the GGS. These are not shown in the algorithm because these

traits are tools in making the algorithm behaves as efficient as possible and are not the main focus

when studying the life cycle of a game.

The limits imposed in[2.1 on the next page]are arbitrary for this example, there are for example

no limits in the GGS on the number of players connecting.

2 CHAPTER 2. THEORY BEHIND THE GGS

Algorithm 2.1 A very simple example of the flow through the GGS system when a game is played.

1: while players < 2:

2: if a player connects, call connected

3: while the game commences:

4: call the function game

5: when the game has stopped

6: call the function endGame

7: function connected:

8 assign the new player an id

9 alert the coordinator of the new player

10: if a free table does not exist:

11: the coordinator creates a new table

12: the coordinator places the player by the table, and begins watching the player
13: function game:

14: perform game-specific functions. In chess, the rules of chess are placed here
15: function endGame:

16: alert the coordinator, unregistering the players

17: disconnect the players from the system, freeing system resources

2.2 Performance

There are many ways in which performance could be measured. For the clients, time and
response times are useful measurements in time critical settings. In non-time critical settings, the
reliability of message delivery may be an even more important factor than speed.

In a first person shooter game, the speed of delivery of messages with information about the
current positions of all players is essential. The failure to deliver messages in time results in choppy
gameplay for the players. In strategy games, the reliability of delivery may be more important
than the speed, since the game is not perceived as choppy even if the messages are delayed.

For someone operating a GGS, it is perhaps more interesting to measure the system load,
memory consumption, energy consumption and network saturation. These topics are discussed in
theory in this section. The practical results for the prototype is discussed in chapter

2.3 Choosing a network protocol

There are two main types of protocols with help of which computer communication over the
Internet usually takes place; TCP and UDP which are known as the network layer protocols and
HTTP which is the most prominent application layer protocol. The transport layer protocols are
commonly used to transport application layer protocols such as HTTP. TCP and UDP cannot
be used on their own without an application layer protocol on top of them. Application layer

protocols such as HTTP on the other hand need a transport layer protocol in order to work.

2.3.1 UDP

Many online games use UDP as the carrier for their application layer protocol. UDP moves
data across a network very quickly, however it does not ensure that the data transferred arrives in
consistent manner. Data sent via UDP may be repeated, lost or out of order. To ensure that the
data is transferred is in good shape, some sort of error checking mechanisms must be implemented.

UDP is a good choice for applications where it is more important that data arrives in a timely

2 CHAPTER 2. THEORY BEHIND THE GGS

manner than that all data arrives undamaged, it is thus very suitable for media streaming for

example.

2.3.2 TCP

For reliable transfers TCP is often used on the Internet. Built in to the protocol are the error
checking and correction mechanisms missing in UDP. This ensures the consistency of data, but

also makes the transfer slower than if UDP had been used.

2.3.3 HTTP

Since HTTP is so widely used in web servers on the Internet today, it is available on most
Internet connected devices. This means that if HTTP is used in the GGS, firewalls will not be a
problem, which is a great benefit. However, due to the intended usage of HT'TP in web servers,
the protocol was designed to be stateless and client-initiated. In order to maintain a state during
a game session using HTTP, some sort of token would have to be passed between client and server
at all times, much like how a web server works. These facts combined make HTTP inappropriate
for use in the GGS, since the GGS requires a state to be maintained throughout a session and also
needs to push data from the server to clients without the clients requesting data. It should also
be mentioned that HTTP uses the TCP protocol for transport.

2.3.4 The GGS Protocol

HTTP was designed to be a stateless protocol, which by adding some overhead is able to remove
the need of a permanent connection and a state for each client. The GGS however already has a
permanent connection to each client because it needs to push information to the clients. Therefore
it is able to use the state to minimize the overhead in the communication between server and
client. Therefore it was decided to invent a new protocol which was human readable like HTTP

but customized for this special use. The GGS protocol is described in more detail in section [3.3.3]

2.4 Generic structure of the GGS

The GGS is a game server. It was made with a desire to be suitable for any kind of game.
Any game with a client-server behavior should be perfectly suited for the GGS. A game should
not only be able to vary in terms of genre, graphics, gameplay etc, but also in the way the
game is implemented for example in different programming languages. The GGS should be OS
independent and run on Windows, OSX and Linux. The GGS can be run as a listen server on the
players computer and host games locally. It could also be a dedicated server running on dedicated
independent hardware. It is meant to run any game in any environment in any way desired,
therefore being as generic as possible.

Another aspect was the desire to let a client upload the source code of the game it would like to
play on the GGS. This way every client could connect to the server and install the game through

a without the need of installation through the server provider or maintainer.

2.5 Fault tolerance

Fault tolerance is an important factor in all servers, a server that is fault tolerant should be

able to follow a given specification when parts of the system fails. This means that fault tolerance

2 CHAPTER 2. THEORY BEHIND THE GGS

is different in each system depending on what specification they have. A system could be fault
tolerant in different aspects, one is where the system is guaranteed to be available but not safe and
it could also be reversed, that the system is safe but not guaranteed to be available. Depending
on the system one property may be more important. A system could also have non existent fault
tolerance or it could be both safe and guaranteed to be available. It should be noted that it is
not possible to achieve complete fault tolerance, a system will always have a certain risk of failure.
With this in mind the goal is to make the GGS prototype as fault tolerant as possible.

In order to make the GGS prototype fault tolerant the programming language Erlang has been
used. Erlang will not guarantee a fault tolerant system but it has features that support and
encourage the development of fault tolerant systems. In the GGS it is important that the system
overall is fault tolerant and not small parts only. Crashes of the whole system should be avoided
as this would make the system unusable for a time. By using supervisor structures it is possible
to crash and restart small parts of the system, this is convenient as fault can be handled within
small modules thus never forcing a crash of the system.

The need for fault tolerance in game servers is not as obvious as it may be for other type of
servers. In general all servers strive to be fault tolerant as fault tolerance means more uptime and
a safer system. This applies to game servers as well, good fault tolerance is a way of satisfying
customers. In general, game servers differ from many other fault tolerant systems in that high-
availability is more important than the safety of the system. For example a simple calculation
error will not be critical for a game server but it may be in a life-critical system and then it is
better that the system crashes than works with the faulty data. There are cases where safety may

be critical in game servers, one example is in games where in-game money exist.

2.6 Availability

One important factor of any server is the availability. A server to which you are unable to
connect to is an useless server. Other then within telecommunication, their uptime is of about
99,9999999%, the game developer community has not approached this problem very genuinely yet
so there is much room for improvement.

There are several good papers on how to migrate whole virtual machines among nodes to
replicate them but for the GGS a different approach has been chosen. Instead of just duplicating a
virtual machine, the programming language Erlang has been used which offers several features to
increase the availability. Some of them are hot code replacement, where code can be updated while
the application is running and without the need to restart it, the supervisor structure provided by
OTP and the inter node and process communication via messages instead of shared memory. We

will discuss each of them later on.

2.7 Scalability

FEach instance of the GGS contains several tables. Each table is an isolated instance of a game,
for example a chess game or a poker game. The way that the GGS scales is to distribute these
tables on different servers. In many games it is not necessary for a player to move among tables
during games. This is for example not a common occurrence in chess, where it would be represented

as a player standing up from her current table and sitting down at a new table, all within the same

10

2 CHAPTER 2. THEORY BEHIND THE GGS

game session. Therefore, the main focus of the GGS is not to move players among tables, but to
keep a player in a table, and to start new tables instead. When a server has reached a certain
number of players the performance will start to decrease. To avoid this the GGS will start new
tables on another server, using this technique the players will be close to evenly distributed among
the servers. It is important to investigate and find out how many players that are optimal for each
server. This approach makes it possible to use all resources with moderate load, instead of having
some resources with heavy load and some with almost no load.

As mentioned in the purpose section there are two different types of scalability, structural
scalability and load scalability. To make the GGS scalable both types of scalability are needed.
Structural scalability means in our case that it should be possible to add more servers to an
existing cluster of servers. By adding more servers the limits of how many users a system can have
is increased. Load scalability in contrast to structural scalability is not about how to increase the
actual limits of the system. Instead it means how good the system handles increased load. The
GGS should be able to scale well in both categories.

2.7.1 Load balancing

The need for load balancing varies among different kind of systems. Small systems that only
use one or a couple of servers can cope with a simple implementation of it, while in large systems
it is critical to have extensive and well working load balancing. The need also depends on what
kind of server structure that the system works on. A static structure where the number of servers
are predefined or a dynamic structure where the number varies.

Load balancing and scaling is difficult in different scenarios. When running in a separate server
park, there are a set number of servers available, this means that an even distribution on all servers
is preferable. When running the GGS in a cloud, such as Amazon EC2, it is possible to add an
almost infinite number of servers as execution goes on. In this cloud setting, it may be more
important to evenly distribute load on newly added servers.

Two methods of balancing load (increasing structure):
e Fill up the capacity of one server completely, and then move over to the next server

e Evenly distribute all clients to all servers from the beginning, when load becomes too high

on all of them, then comes a new problem:
— How do we distribute load on these new servers?

Load balancing is a key component to achieve scalability in network systems. The GGS is a
good example of a system that needs to be scalable, to attain this load balancing is necessary.
Optimization of the load balancing for a system is an important task to provide a stable and
fast load balancer. There are certain persistence problems that can occur with load balancing, if a
player moves from a server to another data loss may occur. This is an important aspect to consider
when the load balancer is designed and implemented.

Load balancing can often be implemented using dedicated software, this means that in many
applications load balancing may not be implemented because it already exist functional solutions.

This depends on what specific needs the system have and a minor goal of the project is to analyze

11

2 CHAPTER 2. THEORY BEHIND THE GGS

Algorithm 2.2 A simple (insufficient) generator for identifiers

1: global variable state := 0
2: function unique

3: state := state + 1

4: return state

whether the GGS project can use existing load balancing tools or if it is necessary to implement

load balancing in the project.

2.7.2 UUID

Inside the GGS, everything has a unique identifier. There are identifiers for players, tables
and other resources. When players communicate amongst each other, or communicate with tables,
they need to be able to uniquely identify all of these resources. Within one machine, this is
mostly not a problem. A simple system with a counter can be imagined, where each request for a
new ID increments the previous identifier and returns the new identifier based off the old one, see
algorithm [2.2] This solution poses problems when dealing with concurrent and distributed systems.
In concurrent systems, the simple solution in algorithm may yield non-unique identifiers due
to the lack of mutual exclusion.

The obvious solution to this problem is to ensure mutual exclusion by using some sort of lock,
which may work well in many concurrent systems. In a distributed system, this lock, along with
the state, would have to be distributed. If the lock is not distributed, no guarantee can be made
that two nodes in the distributed system do not generate the same number. A different approach
is to give each node the ability to generate Universally Unique Identifiers (UUID), where the state
of one machine does not interfere with the state of another.

According to [Leach and Salz| [1998], “A UUID is 128 bits long, and if generated according to
the one of the mechanisms in this document, is either guaranteed to be different from all other
UUIDs/GUIDs generated until 3400 A.D. or extremely likely to be different”. This is accomplished
by gathering several different sources of information, such as: time, MAC addresses of network
cards, and operating system data, such as percentage of memory in use, mouse cursor position and
process IDs. The gathered data is then hashed using an algorithm such as SHA-1.

When using system wide unique identifiers, such as the ones generated by algorithm [2.2] with
mutual exclusion, it is not possible to have identifier collisions when recovering from network
splits between the GGS clusters. Consider figure where Site A is separated from Site B by a
faulty network (illustrated by the cloud and lightening bolt). When the decoupled node and the
rest of the network later re-establish communication, they may have generated the same IDs if
using algorithm even when mutual system-wide exclusion is implemented. This is exactly the
problem UUIDs solve.

12

2 CHAPTER 2. THEORY BEHIND THE GGS

Q

}{O O Game client

—> Network

k Demaged network

Figure 2.2: An example of a network split

2.8 Security

We only support languages running in a sandboxed environment. Each game session is started
in its own sandbox. The sandboxing isolates the games in such a way that they cannot interfere
with each other. If sandboxing was not in place, one game could potentially modify the contents
of a different game. A similar approach is taken with the persistent storage we provide. In the
storage each game has its own namespace, much like a table in a relational database. A game
is not allowed to venture outside this namespace, and can because this not modify the persistent

data of other games. of this not modify the persistent data of other games.

2.9 Game Development Language in a Virtual Machine

There is only a very limited number of game developers who would like to write their games
in Erlang, therefore we had to come up with something to resolve this problem. The main idea
was to offer a replaceable module which would introduce an interface to different virtual machines
which would run the game code. This way a game developer can write the game in his favorite

language while the server part still is written in Erlang and can benefit from all its advantages.

2.9.1 JavaScript

JavaScript has gained a lot of popularity lately, it is used in large projects such as Riakﬂ
CouchDBﬂ On the popular social coding site GitHub.com, 18%[%] of all code is written in JavaScript.
The popularity of JavaScript in the programming community, in combination with the availability
of several different JavaScript virtual machines was an important influence in choosing JavaScript

as the main control language for our GGS prototype.

Thttp://wiki.basho.com/An-Introduction-to-Riak.html
%http://couchdb.apache.org
3during the writing of the thesis the percentage went up to 19% https://github.com/languages/

13

http://wiki.basho.com/An-Introduction-to-Riak.html
http://couchdb.apache.org
https://github.com/languages/

2 CHAPTER 2. THEORY BEHIND THE GGS

2.9.2 Other languages

Other languages like lua, ActionScript are suitable as well because there is a virtual machine for
each of them which can be “plugged in” into our GDL VM interface. With help of the Java Virtual
Machine or the .NET environment it is even possible to run nearly every available programming
language in a sandbox as a GDL.

Due lack of time we have decided to use just the Erlang <-> JavaScrThere is only a very limited
number of game developers who would like to write their games in Erlang, therefore we had to
come up with something to resolve this problem. The main idea was to offer a replacable module
which would introduce an interface to different virtual machines which would run the game code.
This way a game developer can write the game in his favorite language while the server part still

is written in Erlang and can benefit from all of its advantages.

2.9.3 JavaScript

JavaScript has gained a lot of popularity lately, it is used in large projects such as Riakﬂ
CouchDﬂﬂ On the popular social coding site GitHub.com, 18%@ of all code is written in JavaScript.
The popularity of JavaScript in the programming community, in combination with the availability
of several different JavaScript virtual machines was an important influence in choosing JavaScript

as the main control language for our GGS prototype.

2.9.4 Other languages

Other languages like lua, ActionScript are suitable as well because there is a virtual machine for
each of them which can be “plugged in” into our GDL VM interface. With help of the Java Virtual
Machine or the .NET environment it is even possible to run nearly every available programming
language in a sandbox as a GDL.

Due lack of time we have decided to use just the Erlang <-> JavaScript bridge with our

interface.

2.10 Testing

There are several ways in which the GGS can be tested. The most important aspect has been
deemed to be the experience players have when using the GGS. In order to test the user experience
of the GGS, a realistic usage scenario has to be set up.

The GGS is intended to be used for powering games which have many concurrent players. The
players need not participate in the same instance of the game, games such as chess are prime
candidates for the GGS.

When developing the GGS, two main categories of games exhibit in. There is only a very
limited number of game developers who would like to write their games in Erlang, therefore we
had to come up with something to resolve this problem. The main idea was to offer a replacable
module which would introduce an interface to different virtual machines which would run the game
code. This way a game developer can write the game in his favourite language while the server

part still is written in Erlang and can benefit from all of its advantages.

4http://wiki.basho.com/An-Introduction-to-Riak.html
Shttp://couchdb.apache.org
Sduring the writing of the thesis the percentage went up to 19% https://github.com/languages/

14

http://wiki.basho.com/An-Introduction-to-Riak.html
http://couchdb.apache.org
https://github.com/languages/

2 CHAPTER 2. THEORY BEHIND THE GGS

2.10.1 JavaScript

JavaScript has gained a lot of popularity lately, it is used in large projects such as Riakﬂ
CouchDﬂﬂ On the popular social coding site GitHub.com, 18%E| of all code is written in JavaScript.
The popularity of JavaScript in the programming community, in combination with the availability
of several different JavaScript virtual machines was an important influence in choosing JavaScript

as the main control language for our GGS prototype.

2.10.2 Other languages

Other languages like lua, ActionScript are suitable as well because there is a virtual machine for
each of them which can be “plugged in” into our GDL VM interface. With help of the Java Virtual
Machine or the .NET environment it is even possible to run nearly every available programming
language in a sandbox as a GDL.

Due lack of time we have decided to use just the Erlang <-> JavaScrg different performance
demands were identified; real-time games and turn-based games. The real-time games were deemed
more demanding than the turn based games. Tests were carried out using a real time game, since
this is the more demanding type of games.

The real time game chosen for testing the GGS is Pong, a game in which two players play a
game involving a all and two paddles. The goal for each player is to shoot beside the other players
paddle while not allowing the ball to pass by her own paddle. The game requires real time updates
and is quite demanding when played in several instances concurrently.

There has been some work on the area of testing game servers, see |[Lidholt| [2002], who describes
a test bench using bots for testing his generic hazard-gaming server. Lidholt describes how his
server, capable of running several different casino games is tested using artificial players, so called
bots. Performance is measured in “number of clients” able to connect to the server, and the system
load.

Similar tests were performed on the GGS, and the results of these tests are visible in chapter
The tests were initially performed by starting an operating system process for each player. Due
to lack of hardware, not enough player processes could be started in this way. The bots were
re-written in Erlang, and due to Erlang’s light weigh threads, enough processes could be created

to successfully test the server.

"http://wiki.basho.com/An-Introduction-to-Riak.html
&http://couchdb.apache.org
9during the writing of the thesis the percentage went up to 19% https://github.com/languages/

15

http://wiki.basho.com/An-Introduction-to-Riak.html
http://couchdb.apache.org
https://github.com/languages/

3 Implementation of a prototype

This chapter contains the realization of much of the principles and techniques described in
chapter Here the problems and their solutions are discussed in greater detail, and at
times the text becomes more specific to GGS.

Much of what is discussed in this chapter has been implemented in the Erlang GGS prototype.
Specific solutions such as supervisor structures and distribution of erlang nodes on physical nodes.
The different means of communications within the GGS and outside the GGS with third parties
are also discussed here.

The chapter ends with case studies and code examples of particular features of the GGS. The
case studies and the code serve as concrete examples of the implementations outlined in the rest

of this chapter.

3.1 Overview of the prototype

The prototype of the GGS was developed using the Erlang language. The functional and con-
current style of Erlang facilitates development of software based on a real-world model [Armstrong),
2011]. In Erlang, most things are processes. The software running the Erlang code is known as the
Erlang machine, or a Erlang node. Each Erlang node is capable of running several threads (also
known as Light Weight Processes; LWP), much like the threads in an operating system. Threads in
a Linux system, for example, are treated much like operating system processes in different systems.
Due to the size of data structures related to each process, swapping one process for another (known
as context switching) is an expensive task in many systems |[McKusick and Neville-Neil, 2004, pg
80].

The cost of swapping operating system processes becomes a problem when many processes
are involved. If the GGS system had been developed using regular operating system processes, it
would have had to be designed in a way to minimize the number of processes. Using Erlang, which
is capable of running very many processes, several times more than an operating system can, the
mapping between the real world system (described in becomes clearer.

Erlang allows the GGS to create several process for each player connecting, these processes can
handle a multitude of different tasks, parsing data for example. Since each task is handled by a
different process, the tasks are clearly separated and the failure of one is easily recovered without
affecting the others.

In addition to creating (or spawning) processes specifically to handle new players connecting,
the GGS has more permanent processes running at all times. The constantly running processes in
the GGS system are called modules. An example of a module in the GGS is the dispatcher module,
which handles the initial connection made by a client, passing the connection along further in to

the system.

In figure 3.1 on the next page| the entire GGS system is represented graphically. The circles

marked with 'C’ topmost in the picture represent game clients. These circles represent processes

running on gamers computers, and not on the GGS machine. If a game of chess is to be played on

16

3 CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE

Network

g

I

Direct connection Dispatcher
l spawns new

Coordinator

Protocol parser \

Direc}connection - T >
N @ Mnesia
~— _a

Pid <-> UUID Quarantine

Figure 3.1: The layout of the GGS. The circles marked with ’C’ topmost in the picture represent
clients. The cloud marked 'network’ pictured directly below the clients can be any network, for
example the Internet. The barell figure marked 'backup’ is a process being fed backup data from
the coordinator. The barell marked ’State’ contains the state of a table, and this is fed into the
box marked 'Mnesia’ which is database. Finally the figure shaped as a shield marked 'GameVM’
contains the actual game process.

17

3 CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE

the server, the clients on the gamers machines will be chess game clients. Clients connect through
a network, pictured as a cloud, to the dispatcher process in the GGS. The dispatcher process and
all other modules are discussed in [3.3 on page 20l For each connection, a new player process is

spawned, which immediately after spawning is integrated in to the GGS by the coordinator process.

3.2 The usage of Erlang in the GGS

Erlang was designed by Ericsson, beginning in 1986, for the purpose of creating concurrent
applications and improving telecom software. Features essential for the telecom industry to achieve
high availability in telecom switches were added to the language.

Erlang uses message passing in favor of shared memory, mutexes and locks, something which
at the time was controversial among fellow developers |[Armstrong [2010]. The reason for using
message passing, according to Armstrong, was that applications should operate correctly before
optimizations are done, where efficient internal communication within the Erlang machine was
considered a later optimization.

In using message passing in favor of the methods commonly used at the time, the issues com-
monly associated with shared memory and locking were avoided. In Erlang, everything is a process,
and everything operates in its own memory space. Memory cannot be shared among processes,
which prohibits a process from corrupting the memory of a different process.

Messages are sent between the processes in an asynchronous manner, and each process has a
mailbox in which these messages can be retrieved.

Processes in Erlang are also called Light Weight Processes. The Erlang processes are very
cheaply created. Processes exist within an Erlang machine, or Erlang node. The Erlang machine
has its own scheduler and does not rely on the operating system’s scheduler, this is a main reason
of Erlang’s capability of running many concurrent processes |Armstrong] [2003].

The strong isolation of Erlang processes make them ideal for multi-core and distributed sys-
tems. Distribution of software is included as a fundamental part in the Erlang language. The
‘physical’” location of a process, e.g. which computer the process runs on, is not important when
communicating with the process. Processes can communicate regardless of whether they run on
the same system of not, transparently.

The distributed nature of Erlang is something the GGS makes use of when scaling across several
computers in order to achieve higher performance. The distribution is also important in creating
redundancy. Erlang promotes a non-defensive programming style in which processes are allowed to
crash and be restarted in favor of having the processes recover from errors. The distributed nature
of Erlang means supervisor processes (discussed in section can reside on remote systems,
thereby increasing the reliability of the system as a whole.

A very important feature of Erlang, used in the GGS, is the ability to interface with external
hardware and software. Erlang allows communication with external resources through ports and
NIFs (Native implemented functions). Through ports communication can take place much in
the same way communication is performed over sockets. NIFs are called like any other functions
without any difference to the caller but are implemented in C.

The GGS uses Erlang ports for generating UUID&H and NIFs for interfacing with the virtual

1UUIDs are discussed in section m

18

3 CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE

machines of gamesﬂ

Development of the GGS would have been hard if not impossible had it not been for the OTP
supplied with the standard Erlang distribution. The OTP (Open Telecom Platform) is a set of
standard libraries and design patterns, called behaviors, which are used when developing Erlang
systems.

The GGS makes heavy use of the behaviors supplied in the OTP. The behaviors impose a
programming style suitable for distributed and concurrent applications, perfectly suitable for the
GGS. In particular, the GGS uses the following behaviors:

e The supervisor behavior, which is used when creating a supervisor. Supervisors are used
when monitoring processes in the Erlang system. When a process exits wrongfully, the
supervisor monitoring the process in question decides which action to take. In the GGS, the
most common action is simply to restart the faulting process. A more thorough discussion

on supervisors can be found in section [3.5.1

e The gen_ tcp behavior, which is used to work with TCP sockets for network communication.
Using the gen_ tcp behavior, network messages are converted to internal Erlang messages

and passed to a protocol parser, where the messages are processed further.

e The gen_ server behavior, which is used when constructing OTP servers in Erlang. Using
this behavior, a state can easily be kept in a server process, greatly increasing the usefulness
of the server process. There are many gen_ servers in the GGS, it is the most widely used
behavior in the project. In addition to introducing a state to the server, the gen_ server
behavior also imposes patterns for synchronous and asynchronous communication between

other gen_ servers and other OTP behaviors.

e The gen_ fsm behavior is used in the protocol parser module in the GGS. Using the gen_ fsm
behavior, finite state machines are easily developed. Protocol parsers are an ideal example

of where to use finite state machines, which are widely used for parsing strings of text.

In addition to supplying behaviors, the OTP also has a style for packaging and running Erlang
applications. By packaging the GGS as an application the GGS can be started in a way uniform
to most erlang software, providing familiarity for other Erlang users, and eases the incorporation

of the GGS in other applications.

3.2.1 Short introduction to the Erlang syntax

In order to understand examples in this thesis, a small subset of Erlang must be understood.

In this section, the very syntactic basics of Erlang are given.

e Variables start with an uppercase letter, examples include X, Var, and Global. A variable

can only be assigned once.

e Atoms start with lower case letters, for example: atom, a.

2Virtual machines of games are discussed in section

19

3 CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE

e Functions are defined starting with an atom for the name, parenthesis containing parame-
ters, an arrow, a function body and finally a dot marking the end of a function. square (X)

-> XxX. is an example of a function producing the square of X.

e Functions are called by suffixing an atom with the function name with parenthesis, for exam-

ple square (10). Qualified names can be specified using ’:’, for example: math:square(10).

e Tuples are containers of fixed type for Erlang data types. They are constructed using curly

brackets, for example: {atoml, atom2, atom3}.
e Lists are constructed using [and], for example: [1,2,3].
e Strings doubly quoted lists of characters, for example "Hello world".

e Records are erlang tuples coupled with a tag for each tuple element. This allows referring to

elements by name instead of by position. An example of a record looks like this: #myRecord.

3.3 The modular structure of the GGS prototype

The separation of concerns, and principle of single responsibility E| are widely respected as good
practices in the world of software engineering and development. By dividing the GGS up into
modules each part of the GGS can be modified without damaging the rest of the system.

The responsibility and concern of each module comes from the responsibility and concern of
the real-world entity the model represents. The modeling of the GGS after a real world system
was discussed in chapter

In the text below the word module refers to the actual code of the discussed feature, while the

word process is used when referring to a running instance of the code.

3.3.1 The dispatcher module

The dispatcher module is the first module to have contact with a player. When a player connects
to the GGS, it is first greeted by the dispatcher module, which sets up an accepting socket for each
player. The dispatcher is the module which handles the interfacing to the operating system when
working with sockets. Operating system limits concerning the number of open files, or number of
open sockets are handled here. The operating system limits can impose problems on the GGS, this
is discussed more in detail in chapter

Should the dispatcher module fail to function, no new connections to the GGS can be made.
In the event of a crash in the dispatcher module, a supervisor process immediately restarts the
dispatcher. There exists a window of time between the crashing of the dispatcher and the restarting
of the dispatcher, this window is very short, and only during this window is the GGS unable to
process new connection requests. Due to the modular structure of the GGS, the rest of the system
is not harmed by the dispatcher process not functioning. The process does not contain a state,
therefore a simple restart of the process is sufficient in restoring the GGS to a pristine state after
a dispatcher crash.

Returning to scenario of the chess club, the dispatcher module is the doorman of the club.

When a player enters the chess club, the player is greeted by the doorman, letting the player in to

3More information on the SRP is available at: http://www.objectmentor.com/resources/articles/srp.pdf

20

http://www.objectmentor.com/resources/articles/srp.pdf

3 CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE

the club. The actual letting in to the club is in the GGS represented by the creation of a player
process discussed in The newly created player process is handed, and granted rights to, the

socket of the newly connected player.

3.3.2 The player module

The player module is responsible for representing a player in the system. Each connected
player has its own player process. The player process has access to the connection of the player
it represents, and can communicate with this player. In order to communicate with a player, the
data to and from the player object must pass through a protocol parser module, discussed in [3:3.3]
Raw communication, without passing the data through a protocol parser is in theory possible, but

is not useful.

In the creation of a player process, the coordinator process, discussed in [3.3.4 on the next page|

is notified by the newly connected process.

In the event of a crash in a player process, several things happen.

1. The player process, which is the only process with a reference to the socket leading to
the remote client software, passes this reference of the socket to the coordinator process

temporarily.
2. The player process exits.

3. The coordinator spawns a new player process, with the same socket reference as the old

player process had.

4. The player process resumes operation, immediately starting a new protocol parser process,

and begins to receive and send network messages again.

The window of time between the crash of the player process and the starting of a new player
process is, as with the dispatcher, very short. Since the connection changes owners for a short
period of time, but is never dropped, the implications of a crash are only noticed, at worst, as
choppy gameplay for the client. Note however that this crash recovery scheme is not implemented
in the GGS prototype.

Moving back to the real world example, the player process represent an actual person in the
chess club. When a person sits down at a table in the chess club, the person does so by requesting
a seat from some coordinating person, and is then seated by the same coordinator. Once seated,
the player may make moves on the table he or she is seated by, this corresponds clearly to how the

GGS is structured, as can be seen in the following sections.

3.3.3 The protocol parser module

The protocol parser is an easily interchangeable module in the GGS, handling the client-to-
server, and server-to-client protocol parsing. In the GGS prototype, there is only one protocol
supported, namely the GGS Protocol. The role of the protocol parser is to translate the meaning
of packets sent using the protocol in use to internal messages of the GGS system. The GGS
protocol, discussed below is used as a sample protocol in order to explain how protocol parsers can
be built for the GGS.

21

DU W N

3 CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE

Algorithm 3.1 A sample packet sent from a client to the GGS during a chat session

Game -Command: chat
Token: e30174d4-185e-493b-a21a-832e2d9d7ala
Content -Type: text
Content -Length: 18

Hello world, guys!

The structure of the GGS Protocol

The GGS protocol is modeled after the HTTP protocol. The main reason for this is the
familiarity many developers already have with HTTP due to its presence in internet software.
Each GGS protocol packet contains a headers section. The headers section is followed by a data
section. In the headers section, parameters concerning the packet is placed. In the data section,
the actual data payload of the packet is placed.

There is no requirement of any specific order of the parameters in the headers section, however
the data section must always follow directly after the headers section.

In the example below, line 1 contains a Game-Command parameter. This parameter is used
to determine which game-specific command the client is trying to perform. The handling of this
parameter is specific to each game, and can be anything.

Line 2 specifies a game token. This is a UUID which is generated for each client upon au-
thentication with the GGS. The GGS uses this token in case a client is disconnected and the new
connection created when the client reconnects must be re-paired with the player object inside the
GGS. The UUID is also used as a unique ID within GDL VMs.

Line 3 specifies the content type of the payload of this particular packet. This parameter allows
the GGS to invoke special parsers, should the data be encoded or encrypted. When encryption is
employed, only the payload is encrypted, not the header section. This is a scheme which does not
allow for strong encryption, but is deemed feasible for gaming purposes.

Line 4 specifies the content length of the payload following immediately after the headers
section.

The parser of the GGS protocol implemented in the GGS prototype is designed as a finite state
machine using the gen_ fsm behavior. When a full message has been parsed by the parser, the
message is converted into the internal structure of the GGS messages, and sent in to the system

from the protocol parser using message passing.

3.3.4 The coordinator module

The coordinator module is responsible for keeping track of all players, their seats and tables.
Players register with the coordinator process when first connecting to the server, and the coordi-
nator places each player by their respective table.

The coordinator keeps mappings between each player and table, therefore it is used to perform
lookups on tables and players to find out which are connected. The connectivity of players and
tables is important when sending messages to all participants in a game. A lookup in the coordi-
nator process is performed prior to notifying all players in a game to ensure the message reaches

all players. The lookup can be performed either using internal identification codes or using the

22

3 CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE

UUID associated with each client and table.

The coordinator process contains important state, therefore a backup process is kept at all
times. All good data processed by the coordinator is stored for safekeeping in the backup process
as well. Data which is potentially harmful is not stored in the backup process.

Upon a crash, the coordinator process recovers the prior good state from the backup process
and continues where it left off. A supervisor process monitors the coordinator process and restarts
the process when it malfunctions. There is a window of time between the crash of the coordinator
and the restarting of the coordinator, during this time, players cannot be seated by new tables,
and cannot disconnect from the server. This window of time is very small, and the unavailability
of the coordinator process should not be noticed by more than a short time lag for the clients.

Moving back to the example of the chess club, the coordinator process can be seen as a judge,
monitoring all moves of the players. At the same time as acting as a judge, the coordinator process

is also a host in the chess club, seating players by their tables and offering services to the players.

3.3.5 The table module

The table module is mostly a hub used for communication. New table processes are created by
the coordinator on demand. The table module does not contain any business logic, however each
process contains information concerning which players are seated by that particular table.

The information about which players are seated by each table is used when notifying all players
by a table of an action. Consider a game of chess, each player notifies the table of its actions,
the table then notifies the rest of the participants of these actions after having had the actions
processed by the game VM, where an action could be moving a playing piece.

Each table is associated with a game VM. The actions sent to a table are processed by the
game VM, this is where the game logic is implemented.

After a crash in a table process, the entire table must be rebuilt and the players must be
re-associated with the table. Data concerning players is kept in the coordinator process, and is
restored from there. Data kept in the actual game is not automatically corrupted by the crash in
a table, however the table must be re-associated with the game VM is was associated with prior
to the crash of the table. The table process maps well into the setting of the real-world chess club
scenario previously discussed. A table works in the same way in a real world setting as in the GGS

setting.
3.3.6 The game virtual machine module

This module holds the game logic of a game and is responsible for the VM associated with each
game.

The game VM contains the state of the VM and a table token associated with a running game.
GameVM is started by the table module. The table module hands over a token to the game VM
during initialization. During initialization a new VM instance and various objects associated to
the VM instance will be created. Callbacks to Erlang are registered into the VM and then the
source code of a game is loaded into the VM and the game is ready for startup. The only means
for a game to communicate with the VM is through usage of a provided interface.

The VM itself makes it possible for the game developer to program in the programming language

covered by the VM. In future releases, more game VMs will be added to support more programming

23

3 CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE

languages. Because the game VM keeps track of the correct table, the game developer does not
need to take this into consideration when programming a game. If a method within the game sends
data to a player, it will be delivered to the player in the correct running game. The same game
token is used to store the game state in the database. Therefore, no game states will be mixed up
either.

This module does not affect game runtime but evaluates a new game state and handles com-

munication between the game and the players. A closer look at the structure of this model is given

in|3.4 on the following pagel

The code which is run in the VM is uploaded to the GGS prior to each game. Allowing the

clients to upload code allows clients to run any game.

3.3.7 The database module

Game data from all games on the GGS are stored in the database backend of the database
module.

In the GGS prototype the database module is using a database management system called
Mnesia. Mnesia ships with the standard Erlang distribution and is a key-value store type database.
Mnesia is designed to handle the stress of telecoms systems, and has some features specifically
tailored for telecoms which are not commonly found in other databases. Key features of the

Mnesia database are:
e Fast key/value lookups
e Distribution of the database system

e Fault tolerance

Mattsson et al.| [1998]

The features of Mnesia originally intended for telecoms prove very useful for the purposes of the
GGS as well. The fault tolerance and speed of Mnesia are very valuable tools, the fast key/value
lookups permit many lookups per second to the database.

Game data will not be lost when a game is stopped or has gone down for unknown reasons.
This makes it possible to continue a game just before the failure without having to start the game
from the beginning.

The GGS stores the game state in the distributed Mnesia database, from which the state can
be restored in the event of a crash.

Fach game is uniquely identified by a table token and the data of each game is stored within
two different namespaces. The namespaces are named World and Localstorage. The World is
used contain all game data related to the game state. This sort of game data may change during
the runtime of the game. The Localstorage should contain data independent of the game state.
Game resources, constants and global variables are all examples of data that could reside within
the Localstorage. To store a value within the database, not only is the table token and the name
of the namespace required, but a unique key so that the value can be successfully retrieved or
modified later. The key is fully decidable by the game developer.

The interface of the database module is an implementation of the upcoming W3C Web Storage

specification. Web Storage is intended for use in web browsers, providing a persistent storage

24

3 CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE

on the local machine for web applications. The storage can be used to communicate in between
browser windows (which is difficult when using cookies), and to store larger chunks of data [Hickson
[2011]. Usage of the web storage standard in the GGS provides a well documented interface to the
database backend.

3.4 Communication with the GDL VM

A game launched on the GGS is run within a virtual machine. For each programming language
supported, there is a virtual machine that interprets the game. Furthermore an interface for
communication between the GGS, the game and the players playing the game is present.

Callbacks written in Erlang are registered to the VM for the interface to work. It is only with
the help of the interface that the game developer can access the game state and send messages to
the clients. The interface provides access to three objects called world, players and localStorage.
The game state is safely stored in a database and retrieved for manipulation by a call for the
world object. Interaction with the players is done by using the GGS.sendCommand(player id,
command, args) and GGS.sendCommandToAll(command, args). The localstorage is a convenient
way to store global data and other variables separated from the game state. Unique ids called
gametokens are generated for hosted games so that they are not mixed up.

A game launched on the GGS is run within a virtual machine. For each programming language
supported, there is a virtual machine that interprets the game. Furthermore an interface for

communication between the GGS, the game and the players playing the game must be present.

3.4.1 Exposing Erlang functionality to the GDL VM

This section contains a concrete example of how the localstorage and world objects are exposed
to a GDL VM. The example comes from the GGS prototype, which uses JavaScript powered by
Google V8 as its GDL VM.

The code given in [3.2] is specific to V8 and JavaScript, however implementations for different
GDLs, or different VMs should be similar.

In JavaScript is is common to use a top level object, called a global object, to establish a global
scope. This allows the declaration of global variables and functions. To gain access to the global
object in the GGS, the erlv8_vm:global(..) function on line 2 of the example is used. Using
the global object, declarations of the world and GGS object can be placed in the global scope.

Global:set_value(..) isa call to the global object, declaring new objects in the global scope.
On line 4 the GGS object is declared. By accessing GGS.localStorage from within the GDL,
access to the localstorage is provided, thus the localstorage must be connected to the GGS object,
this can be seen in line 5.

Both the GGS and localstorage objects are dummy objects, which provide no functionality,
these two objects are simply placed in the GDL for the purpose clearing up the code. In order
to perform an action using the GGS and localstorage objects, the getItem and setItem functions
must be used. These items are directly connected to the database module of the GGS, which is
discussed in more detail in

Similarly the functions sendCommand, sendCommandToAll and setTimeout are directly con-

nected to a piece of code in the GGS which performs the desired action. The sendCommand func-

25

© 00 O Ut W~

WWWWWWWNNNNNNNNNNLNEERE R 22
QDU WNF OOOTIDDUUERE WNRFE O OO Uk W~ O

3 CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE

Algorithm 3.2 An example of how Erlang functionality is exposed to a JavaScript GDL

% @doc Exposes some GGS functions to JavaScript
expose (GameVM, Table) ->
Global = erlv8_vm:global (GameVM),
Global:set_value("GGS", erlv8_object:new ([
{"localStorage", erlv8_object:new ([

{"setItem", fun(#erlv8_fun_invocation{}, [Key, Vall)->
ggs_db:setItem(Table, local_storage, Key, Val)

end},

{"getItem", fun(#erlv8_fun_invocation{}, [Keyl)->
ggs_db:getItem(Table, local_storage, Key)

end}

% more functions

DR
{"world", erlv8_object:new([

{"setItem", fun(#erlv8_fun_invocation{}, [Key, Vall)->
ggs_db:setItem(Table, world, Key, Val),
ggs_table:send_command_to_all(

Table, {"world_set", Key ++ "=" ++ Vall}
)

end},

{"getItem", fun(#erlv8_fun_invocation{}, [Keyl)->
ggs_db:getItem(Table, world, Key),

end}
% more functions

D,

{"sendCommand", fun(#erlv8_fun_invocation{}, [Player, Command, Args])->
ggs_table:send_command (Table, Player, {Command, Args})

end},

{"sendCommandToAll", fun(#erlv8_fun_invocation{}, [Command, Args])->
ggs_table:send_command_to_all(Table, {Command, Args})

end}

{"setTimeout", fun(#erlv8_fun_invocation{}, [Time, Function])->
timer:apply_after (Time, ?MODULE, call_js, [GameVM, Function])

end}

% more functions

).

tions are used to send commands or text to participants of the table. The setTimeout function

introduces timeouts to the V8 engine, which are not available per default.

3.5 Techniques for ensuring reliability

One of the main goals of the project is to achieve high reliability. The term “reliable system” is
defined by the IEEE as a system with “the ability of a system or component to perform its required
functions under stated conditions for a specified period of time” [Electrical and | [ieee]. There are

some tools for creating reliable applications built in to Erlang.

e Links between processes. When a process spawns a new child process, and the child process

later exits, the parent process is notified of the exit.

e Transparent distribution over a network of processors. When several nodes participate in a
network, it does not matter on which of these machines a process is run. Communication

between processes does not depend on the node in which each process is run.

e Hot code replacements. Two versions of the same module can reside in the memory of Erlang

26

3 CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE

Root
supervisor

Coordinator Dispatcher
supervisor supervisor

Coordinator Backup Dispatcher Backup

Figure 3.2: The supervisor structure of GGS

at any time. This means that a simple swap between these versions can take place very

quickly, and without stopping the machine.

These three features are some of the basic building blocks for more sophisticated reliability systems
in Erlang. Many times it is not necessary to use these features directly, but rather through the

design patterns described below.

3.5.1 Supervisor structure

By linking processes together and notifying parents when children exit, supervisors are created.
A supervisor is a common approach in ensuring that an application functions in the way it was
intended |Savor and Seviora, [1997]. When a process misbehaves, the supervisor takes some action
to restore the process to a functional state.

There are several approaches to supervisor design in general (when not just considering how
they work in Erlang). One common approach is to have the supervisor look in to the state of the
process(es) it supervises, and let the supervisor make decisions based on this state. The supervisor
has a specification of how the process it supervises should function, and this is how it makes
decisions.

In Erlang, we have a simple version of supervisors. We do not inspect the state of the processes
being supervised. We do have a specification of how the supervised processes should behave, but on
a higher level. The specification describes things such as how many times in a given time interval
a child process may crash, which processes need restarting when crashes occur, and so forth.

When the linking of processes in order to monitor exit behavior is coupled with the transparent
distribution of Erlang, a very powerful supervision system is created. For instance, we can restart
a failing process on a different, new node, with minimal impact on the system as a whole.

In the GGS, we have separated the system in to two large supervised parts. We try to restart

27

3 CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE

Normal execution Exceptional execution

Server Backup Sexer Backup

Figure 3.3: To the left normal execution is pictured; the server state is backed up. To the right;
the exceptional execution, where the state is retrieved from the backup to repopulate the server.

a crashing child separately, if this fails too manylﬂ times, we restart the nearest supervisor of this
child. This ensures separation of the subsystems so that a crash is as isolated as possible.

The graphic above shows our two subsystems, the coordinator subsystem and the dispatcher
subsystem. Since these two systems perform very different tasks they have been separated. Each
subsystem has one worker process, the coordinator or the dispatcher. The worker process keeps a
state which should not be lost upon a crash.

We have chosen to let faulty processes crash very easily when they receive bad data, or some-
thing unexpected happens. The alternative to crashing would have been to try and fix this faulty
data, or to foresee the unexpected events. We chose not to do this because it is so simple to monitor
and restart processes, and so difficult to try and mend broken states. This approach is something
widely deployed in the Erlang world, and developers are often encouraged to “Let it crash”.

To prevent any data loss, the good state of the worker processes is stored in their respective
backup processes. When a worker process (re)starts, it asks the backup process for any previous
state, if there is any that state is loaded in to the worker and it proceeds where it left off. If on the
other hand no state is available, a special message is delivered instead, making the worker create

a new state, this is what happens when the workers are first created.

3.5.2 Redundancy

The modules in the GGS are built to be capable of redundant operation. By adding a backup
process to sensitive processes, the state can be kept in the event of a crash. The coordinator of the
GGS prototype has this backup feature built in. The coordinator passes state along to the backup
process which keeps the data safe. In the event of a crash, the coordinator recovers the state from

the backup process. Figure depicts the redundancy built in to the coordinator process.

3.5.3 Hot code replacement

Hot code replacement is a technique used to update systems while they are running. The main
use of hot code replacement are in critical systems that require low downtime, such as telecom
systems. By using hot code replacement system can be able to achieve as high uptime as possible
and thus improving the reliability of the system. Code replacement is a feature that exist in Erlang

which means that with some work it could be implemented into the GGS.

4Exactly how many “too many” is depends on a setting in the supervisor, ten crashes per second is a reasonable
upper limit.

28

3 CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE

3.6 Software testing

In order to make sure the GGS prototype adheres to the specification set two different ap-
proaches to software testing are used. For simpler testing the GGS prototype uses unit tests.
Modules are tested on a high level, making sure each function in the module tested functiions
according to specification.

Unit testing is not employed to test the system from the client side. In order to more accurately
simulate real users some randomization is needed, as users do not always act rationally. In order
to introduce random data, the client side of the GGS is simulated by QuickCheck tests.

3.6.1 Unit testing

Unit testing is a way to check if the functionality adheres to the specification of the system by
manually creating test cases for sections of code. In most cases whole functions. Unit testing is
good, not only for revealing software bugs, but also to state that a feature is working according
to the specification. Unit testing is a common way to test software and has proven useful within
the GGS when functions take complicated arguments. In these cases it is easy to set up a scenario
that should work.

Unit testing is a useful way to create regression tests. Regression tests are used to make sure
changes made to the GGS do not introduce new bugs or break the specification. The regression

tests are optimally run very often, such as after each change to the code.

3.6.2 Automated test case generation

The problem of writing software tests manually, is that it takes a lot of time. There exists
other ways to test software that address this problem by generating test cases with certain prop-
erties. This allows for testing functions with a lot of different input parameters without having to
implement each specific test itself.

By having each test automatically generated, each test can be very complex and long. In order
to generate random, complex tests the GGS uses QuickCheck. By using QuickCheck the GGS can
be tested with input which would be extremely difficult to construct using manual testing methods.
Regression tests, such as the unit tests used by the GGS are more useful for ensuring the system
does not diverge from a working scenario than for finding new cases where the specification does
not hold |Arts et al.| [2006].

The entire GGS was not tested using QuickCheck, nor was the entire client protocol for a game
tested using QuickCheck, however the tests performed using QuickCheck show that an automated
testing system such as QuickCheck is a very viable testing method for the GGS.

QuickCheck has features to generate very large and complex tests, the results of which can be
hard to analyze. The solution to reading these complex test is to extract a minimal failing test
case which contains the smalles failing test sequence. By applying a very large test and gradually
simplifying the test to find the smallest failing sequence, many bugs which would other wise have
been hard to catch can be caught |Arts et al.| [2006].

QuickCheck was originally made for the programming language Haskell. There are a lot of
reimplementations of QuickCheck in various programming languages. Erlang QuickCheck (EQC)
and Triq are two variants of QuickCheck for Erlang. EQC was chosen for testing the GGS. Besides

29

CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE

the standard functionality that QuickCheck provides, EQC is capable of testing concurrency within

a program.

3.7 Case studies

This section contains three case studies. These case studies have been written to provide

examples of how the flow through the GGS can look when performing different tasks. The first

case study outlines the flow of sending a common message to the GDL VM and receiving a response.

The second case study provides an example of the process of connecting to the GGS to set up a

game. The third and final case study is a section of code from a part of a game for the GGS.

The code in the third study shows how a simple chat server can be implemented in the GGS using
JavaScript as GDL.

3.7.1 Typical communication

This case study describes the flow through the GGS when a typical command is encountered.

Below is a case study where a chat client sends a message to change the nick of a user. The actual

code performing the change of a nick in JavaScript is discussed in section [3.7.3] All communication

between modules is asynchronous, nothing is blocking, which is very important in concurrent

systems. To follow the example more easily, looking at the graphic in section is

recommended.

1.

The client packages a Game-Command into a GGS protocol packet which conforms to the

protocol structure the GGS is using and sends it over the network.

The player process, which is coupled to the TCP-process which reacts on incoming messages,

accepts the message and forwards the raw data to the protocol parser process.

The protocol parser process parses the message and brings it into the format of the internal

GGS presentation of such a message, which is just a specialized Erlang tuple.
The protocol parser sends this Erlang touple back to the player process.

The player process checks if it is a Server-Command or a Game-Command. In our example

it is a Game-Command and it sends the message to the table process.
The table process sends it to its own Game VM process.

The game VM process calls the function playerCommand(“278d5002-77d6-11e0-b772-af884def53497,
“nick”, “Peter”) within the JavaScript VM.

The JavaScript VM (JSVM) - at this stage Googles V8 JavaScript Engine - evaluates the
function within the sandboxed game context which has been established earlier during the

setup of the game.

In the example in section we see that the GGS-functions GGS.localStorage. setltem (key,
value) and GGS.localStorage(key) are used. Both are callbacks coupled to the database

module functions.

30

3 CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE

10. Data is being read from and written to the database and handed over to the JSVM via the

database process.

11. In the example the GGS.sendCommandToAll() is being called then which is a callback to a
function of the table module which iterates through its player list and sends the command

to every player.

12. The table process sends every player process the message to send the message with the change

of a nickname of a particular user to its own client.

13. The player process asks the protocol process to create a message conforming to the protocol

which is being used.

14. The protocol process creates a string according to the protocol and returns it to the player

process.
15. The player process sends the message with help of the gen_ tcp module to the client.

3.7.2 Initialization and life cycle of a game

This case study describes the initialization and definition of a game and in roughly its life cycle
untill it is removed from the GGS.

Initialization
1. A client connects via TCP to the GGS.

2. The dispatcher process reacts on the incomming connecction and creates a new player process.

3. The dispatcher process couples the TCP connection to the newly created player process, this

way the new player process is responsible to react on incoming messages.
4. The client sends a message with a HELLO Server-Command to initiate a handshake.
5. The player module parses the message with help of the protocol module.

6. If the message was just a plain HELLO, without a table token, then the player process asks
the coordinator process to create a new table process and add this player process to this
newly created table. If the client did send a table token then the player process asks the

coordinator to att the player process to this table.

7. During the creation of a new table the table process creates a new game VM process which

creates its own game context within the JavaScript VM.

8. The player process answers to the client with a HELLO Client-Command and passes on the
clients player token along with the information about if it should define a game - because it

is the first client to connect to this table - or not and the table token it was assigned to.

31

CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE

Defining a game

The generic nature of the GGS leaves it up to the client to define which game should be run.
The definition is done in the GDL, in this example, the GDL is JavaScript. It is possible to alter

the GGS prototype so that only the server maintainer is able to install new games on the server

however the current implementation of the GGS is much more generic.

The first client which connects to a table is responsible to provide the JavaScript server source

code. To do so there is a DEFINE Server-Command.

If during the handshake with the HELLO command the client is assigned the task of providing
the server source code then the client must send a DEFINE Server-Command message with
the source code as its parameter. Only the first client will get the information about the

need of defining a game during the handshake.
The player process parses the message, with help of the protocol module.

The player process sends the source code to the table process assigned to the player as a

DEFINE message.
The table process forwards the source code to the game VM process.
The game VM process executes the source code within the JavaScript VM.

The JavaScript VM evaluates the source code - which has to implement the playerCommand)()

function - within the context of the game.

The game is at this point fully initialized and can be used by all clients with help of the

playerCommand() function.

The table process saves the source code in the database for backup reasons (this is not yet

implemented).

The player process sends a DEFINED Client-Command to the client. This way the client is

notified that everything went well and it can start the game.

Life cycle

1.

2.

Initialization

Defining a game

Other clients connect and initialize but do not define anything.
Typical communication

Clients disconnect

When the last client disconnects the table process terminates and with it the game context

and database content (not implemented in the prototype).

32

0O~ O Ui W

3 CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE

Algorithm 3.3 A concrete example of a simple chat server written in JavaScript, running on the
GGS

function playerCommand(player_id, command, args) {

if (command == "nick") {
changeNick (player_id, args);
} else if (command == "message") {

message (player_id, args);
}
}
function changeNick(player_id, nick) {
var old_nick = GGS.localStorage.getItem("nick_" + player_id);
GGS.localStorage.setItem("nick_" + player_id, nick);
if (lold_nick) {
GGS.sendCommandToAll ("notice", nick + " joined");
} else {
GGS.sendCommandToAll ("notice", old_nick + " is now called " + nick);
}
}
function message(player_id, message) {
var nick = GGS.localStorage.getItem("nick_" + player_id);
GGS.sendCommandToAll (’message’, nick + "> " + message);

3.7.3 A GGS server application in JavaScript

Below is a concrete example of a simple chat server application written using the GGS. The
language chosen for this chat server is JavaScript. The GGS processes all incoming data through
a protocol parser, which interprets the data and parses it into an internal format for the GGS.

When the GGS receives a Game-Command from a client, it is passed along to the game VM
through a function called playerCommand which is the entry point for each game and has to
be implemented by the developer; one can think of it like the main() function of a C or Java
program. Typically the playerCommand function contains conditional constructs which decide the
next action to take. In 3.3 an example of the playerCommand function can be seen.

In the playerCommand function accepts two different commands. The first command is
a command which allows chat clients connected to the chat server to change nicknames, which
are used when chatting. In order to change the nickname, a client must send a Game-Command
“nick” with the actual new nickname as a argument. When a message arrives to the GGS which
has the form corresponding to the nickname change, the playerCommand function is called with
the parameters player id, command, and args filled in appropriately.

The playerCommand function is responsible for calling the helper functions responsibly for
carrying out the actions of each message received. changeNick is a function which is called when the
“nick” message is received. The changeNick function uses a feature of the GGS called localstorage
(see section , which is an interface to the database backend contained in the database module
(see . The database can be used as any key-value store, however the syntax for insertions
and fetch operations is tightly integrated in the GDL of the GGS.

Access to the localStorage is provided through the GGS object, which also can be used to
communicate with the rest of the system from the GDL. Implementation specifics of the GGS
object are provided in

33

4 Problems of implementation

This chapter contains specific problems encountered when implementing the GGS prototype.
Some of the problems described have solutions attached, however some problems were not solved,
therefore only ideas for solutions have been attached.

The integration of JavaScript as a GDL in the GGS prototype was particularly difficult, and is

handled in this section and so is the protocol design.

4.1 JavaScript engine

The GGS prototype uses a virtual machine to sandbox each game. JavaScript was chosen for
the prototype due to its commonality in web applications and the flexibility of the language. Any
language with the proper bindings to Erlang could have been used in theory.

There are two JavaScript virtual machines, or engines, with suitable bindings to erlang available
at the time of the writing of this thesis. There is a group of machines developed by Morzilla called
TraceMonkey, JaegerMonkey, SpiderMonkey and IonMonkey, and also there is Googles V8. The
members in the group of Mozilla machines are largely the same, and are referred to as the same
machine for simplicity.

For the Mozilla machines, there exists a Erlang binding called erlang_ js, and for the V8 machine

a binding called erlv8 exists.

4.1.1 erlang_js

erlang_js provides direct communication with the JavaScript VM. Which is exactly what is
desired, however also required is the possibility to communicate from JavaScript to Erlang. The
ability to communicate from JavaScript to Erlang is not yet implemented in erlang_ js, due to lack
of time of the erlang js developers.

There were two possible solutions to the problem, either one would implement the missing
functionality, or a switch from erlang js to some other JavaScript engine with better bindings
could be made.

Attempts at implementing the missing functionality were initially made but never became stable

enough for usage in the GGS and the erlang_js software was abandoned.

4.1.2 erlv8

erlv8 is powered by the V8 engine developed by Google. The ability to communicate from
JavaScript to Erlang using callbacks (aka NIF) is available in the erlv8 bindings and can be used
within the GGS.

Initial releases of the erlv8 bindings had stability issues, these however were resolved by the
erlv8 developers during the development GGS. At this point erlv8 is the JavaScript engine powering
JavaScript as a GDL in the GGS.

34

4 CHAPTER 4. PROBLEMS OF IMPLEMENTATION

4.2 Protocol design

Initially the GGS protocol was planed to use the UDP protocol for transport. Due to the lack
of error checking in the UDP protocol, the UDP protocol is faster than the TCP protocol, this was
a main reason in the desire to use UDP. The GGS does however need error checking for some of it
parts to be as reliable as possible. Therefore an error checking layer would have to be placed on
top of UDP.

The development of an error checking layer was weighed against the implementation of TCP
instead of UDP, thus losing some speed. Even though speed was lost, TCP was chosen due to
the relative ease of implementation compared to UDP. Due to the modularity of the GGS, a UDP
extension is easily possible by replacing the network parts of the GGS.

The Apache Thrift [Agarwal et al. [2007] was also an alternative. Using Thrift would mean
the GGS would feature a standard protocol for network communication. Before finding out about
Thrift during a lecture of Joe Armstrong (one of the inventors of Erlang), an implementation of
the GGS protocol had already been implemented, moving to Thrift would mean too much efford
for a prototype during the short amount of time.

The use of Thrift, Google protocol buffers - which is a different approach to that implemented
by Google - or other protocols can be supported quite easily by developing protocol modules for
each the protocols. No protocol modules for these protocols have however been developed during

the writing of this thesis.

35

5 Results and discussion

In this chapter the results of the GGS prototype are presented and discussed. The results of
the ing are presented with both graphical and textual content. Finally thoughts about how future

improvements to the prototype could look like are given.

5.1 Statistics

Testing of the GGS took place in two separate sessions. The first session simulates a highly
demanding application, the second session simulated a less demanding application. The highly
demanding application is a real time game which does several asynchronous database writes each
second. The less demanding application does not perform any database reads or writes.

Each of the two simulations use JavaScript as the GDL. The JavaScript is run through Google
V8. The database module uses Mnesia.

During the sessions two measurements were recorded.

e Messages per second is used to see how many incoming and outgoing messages the server
can process each second. The results of the messages per second testing are shown for a high

demanding application in figure [5.1] and for a low demanding application in [5.3}

e Latency between server and client is used to measure the round-trip time for a message
travelling between the client and server. This measurement is used to determine how many
players the server can handle while still providing a playable gaming experience. The results

of the latency test can be seen in figure [5.2

The hardware that the GGS was running on was a Thinkpad T410, with a Intel i5 processor and
4GB of RAM.

In the first test, where Mnesia was used, the server had a peak value of nearly 6000 messages
per second. When this number was reached Mnesia warned that it was overloaded and shortly after
that Mnesia failed to serve requests. This result was not unexpected as this test put the database
under heavy load. In the next testing session, the test was conducted with another client that did
not use Mnesia. Without mnesia the server peaked at 60000 messages per second, however this
was only for a very short time. The average throughput was around 25000 messages per second,
five times more than what the server was able to process with Mnesia in place.

In the second testing session the delay between the server and clients was also measured. A
connection can be seen between those values, as long as the server is under moderate load the
delay is low and stable. When the load on the server increases heavily the delay does the same,
this is because the server cannot process all incoming messages and therefore messages are put in

a queue within the system.

36

5 CHAPTER 5. RESULTS AND DISCUSSION

6000 . . .

Client r'nessacjes
Server messages
5000 1

4000 1

3000 1

2000]

Messages / second

1000 1

— rwx/w”"*/\f\/M L\/f \U"\J MJ\M%A%W \VL\“\/NJ MJ VV\NW\'MWJJ/M\/M\J ‘

O Iy
0 50 100 150 200 250 300 350 400

Number of clients

Figure 5.1: The graph shows messages per second for intervals of clients connected. Each client
performs 3 asynchronous writes to the Mnesia database each second.

1000 : : : ——
Ping in ms ‘
900 e

800 r | 1T
700 | |

600
500 t
400 t
300 | il
200 g‘

100 | IO
4 J, ~ '\M Uﬂ h

0 100 200 300 400 500 600
Number of clients

Ping in ms

Figure 5.2: This graph shows the latency in a low-demand application. The ping is measured in
milliseconds for a message to make a round-trip between client and server.

37

5 CHAPTER 5. RESULTS AND DISCUSSION

70000 . .

Client messages

60000 | Server messages

50000 r 1
40000 r 1
30000 r 1

20000 r .

Messages / second

10000 | 1

O I e oy Ly

0 100 200 300 400 500 600
Number of clients

Figure 5.3: The graph shows messages per second for intervals of clients connected. No database
is connected.

5.2 Future improvements

There are several things in the GGS that can be improved. In this section the most important
additions to the GGS are described, along with a motivation as to why these additions are not

found in the GGS prototype.
5.2.1 Distribution

The GGS was originally intended to be a distributed application, running on several machines at
once. The design of the GGS should support this, it has however not been tested. The technologies,
such as supervisor trees and the servers supplied by the OTP which are used in the GGS all support
the development of distributed applications.

Distribution was however not implemented in the GGS. Other parts of the GGS were prioritized.
A futute improvement is therefore to implement distribution in the GGS. A simple way to achieve
this is to keep one GGS instance as a coordinating instance, and to keep clients on other instances

of the GGS, which can be dynamically added as new clients connect.

5.2.2 Performance

The GGS prototype was not developed for maximum performance. Performance optimizations
were considered, many were however not implemented in the prorotype. There are several perfor-
mance optimizations which can be included in future versions of the GGS, below are some of the

most important performance optimizations identified.

38

5 CHAPTER 5. RESULTS AND DISCUSSION

Protocols

Because of TCP being a connection oriented protocol, it is not suited for all types of game data
transfers. Each transmission will consume more network bandwidth than connectionless protocols
like UDP and cause unnecessary load on the processor. Therefore support for UDP would mean
that more games could be run simultaneously on the GGS. Another advantage of UDP is latency
being reduced. Without having to setup a connection for each group packets of data being sent,
they will be sent instantly and therefore arrive earlier. Latency is of highest importance in real-
time games as it improves realism and fairness in gameplay and many game developers require the
freedom to take care of safety issues as packet losses themselves. This concludes that UDP would

be a benefit for the GGS, game developers and players alike.
Database

Currently Mnesia is used for game data storage. During stress tests, Mnesia has turned out to
be the bottleneck due to data losses when too many games are played on the GGS simultaneously.

The usage of Mnesia in the GGS is not the usage originally intended. Originally a cache was
to be placed before Mnesia. The cache could be either Erlang Term Storage (ETS) or a Erlang
process which keeps track of all database actions. The cache periodically flushes its contents to
Mnesia, thereby reducing the Mnesia transactions overall.

The cache was never implemented in the prototype due to other parts of the GGS being prior-
itized. The current implementation of the database backend is not optimal, however it functions
reliably, therefore it was deemed sufficient for the prototype.

A possible future addition to the GGS could be to add this cache in the database module. The

API would not need to change, as this could be implemented internally in the database module.

5.2.3 Documentation

To start the GGS is not self explanatory. This together with overall usage of GGS should
be documented. The interface for usage of game developers are also in need of documentation.
Features and requirements with respect to the GGS would assist users to know what they need to
use the GGS and how they would benefit of it. The GGS does not support many programming
languages nor does it have a complete documentation. This needs to be taken care of in future

versions.

39

Conclusion

40

Glossary

NetHack An early computer game developed by the NetHack team, arguably the oldest computer

game still in development
Pacman An early graphical computer game developed by Namco
Zork A textual computer game developed by students at MIT
.NET Software platform
ActionScript Programming language
Amazon EC2 A cloud computation service
Application A way of packaging Erlang software in a uniform way
AXD301 Telephone switch developed by Ericsson
Behaviour A design pattern in OTP
C++ Programming language
COBOL Programming language

Context switch The act of switching from one context, commonly a process, to another. Used

by operating systems to achieve multi tasking
CouchDB Database server
Counter-Strike A multiplayer first person shooter game, popular in E-Sports.
Doom A first person shooter series developed by ID software. The series consists of three games.
Downtime The amount of time a system is unavailable and does not function

Erlang A concurrent programming language, often used for telecom applications. The main
language of the GGS

ETS Erlang Term Storage

First-person shooter A game in which centers around gun combat from the first person per-

spective.
Framework A supporting structure, the GGS is a framework for developing network games
GDL Game Development Language, the language used to program games in the GGS

GGS Generic Game Server, a software for reliably hosting network games. The subject of this

thesis.
GitHub.com Social coding website

Hardware failiure A failiure in hardware (hard drive, memory, processor, etc) which causes a

system to stop functioning
HTTP Hyper Text Transport Protocol, a network protocol commonly used to deliver web pages

IEEE Institute of Electrical and Electronics Engineers, read I-triple-E

41

6 CHAPTER 6. CONCLUSION

JavaScript A programming language originally developed by Netscape, common in web program-

ming
Java Programming language
Latency A measure of delay, often measured in milliseconds
Lua Programming language
LWP Light Weight Process
MAC Address Media Access Control address, used to identify network cards

MMORPG Massively multiplayer online role playing game. An online game with several thou-

sand participants.
Mnesia Database server used in the GGS
Module A part of a larger system

Mutex A construct for achieving mutial exclusion, used to avoid simultaneous access to shared

resources in computer systems

Network split Separation of two networks, occurs when two networks cannot communicate, com-

monly because of a hardware or software failiure
Object Oriented Programming A programming paradigm focusing on objects
OTP Open Telecom Platform, a software suite for Erlang
Quake A first person shooter series developed by ID software. The series consists of four games.

Reliability The ability of a system or component to perform its required functions under stated

conditions for a specified period of time
Riak Database server
Sandbox A protected environment in which computer software can be run safely
SHA-1 Cryptigraphic hash function, designed by the National Security Agency (NSA)

Software failiure A failiure in software (the GGS, the operating system, etc) which causes a

system to stop functioning
SpiderMonkey JavaScript engine developed by Mozilla
SQL Structured Query Language, a computer language common in querying certain databases
SRP Single Responsibility Principle
Supervisor A process monitoring and hadning crashes in other processes

TCP Transmission Control Protocol, a streaming network protocol

42

6 CHAPTER 6. CONCLUSION

The nine nines A common goal for availability in the telecom business. A system with nine
nines of availability is available 99.999999999

UDP User Datagram Protocol, a connectionless networking protocol

Uptime The amount of time a system is available and functions

UUID Universally Unique Identifier

V8 JavaScript engine developed by Google

VM Virtual Machine

WebStorage A new standard for letting websites store data on visitors’ computers

World of Warcraft A MMORPG game developed by Blizzard. The world’s most popular MMORPG

by subscriber count.

API Application programming interface

43

Bibliography

Aditya Agarwal, Mark Slee, and Marc Kwiatkowski. Thrift: Scalable cross-language services
implementation. Technical report, Facebook, April 2007. URL http://incubator.apache.
org/thrift/static/thrift-20070401.pdf.

Joe Armstrong. Making reliable distributed systems in the presence of software errors. PhD thesis,
KTH, Microelectronics and Information Technology, IMIT, 2003.

Joe Armstrong. Erlang. Commun. ACM, 53:68-75, September 2010. ISSN 0001-0782.
doi: http://doi.acm.org.proxy.lib.chalmers.se/10.1145/1810891.1810910. URL http://doi.
acm.org.proxy.lib.chalmers.se/10.1145/1810891.1810910.

Joe Armstrong. If erlang is the answer, then what is the question?, 2011.

Thomas Arts, John Hughes, Joakim Johansson, and Ulf Wiger. Testing telecoms software with
quviq quickcheck. In Proceedings of the 2006 ACM SIGPLAN workshop on Erlang, ERLANG
’06, pages 2-10, New York, NY, USA, 2006. ACM. ISBN 1-59593-490-1. doi: http://doi.acm.
org/10.1145/1159789.1159792. URL http://doi.acm.org/10.1145/1159789.1159792.

Entertainment Software Association. Industry facts, April 2011. URL http://www.theesa.com/

facts/index.asp.

André B. Bondi. Characteristics of scalability and their impact on performance. In Proceedings of
the 2nd international workshop on Software and performance, WOSP *00, pages 195203, New
York, NY, USA, 2000. ACM. ISBN 1-58113-195-X. doi: http://doi.acm.org/10.1145/350391.
350432. URL http://doi.acm.org/10.1145/350391.350432.

Institute O. Electrical and Electronics E. (ieee). IEEE 90: IEEE Standard Glossary of Software
Engineering Terminology. 1990.

Johannes Farber. Network game traffic modelling. In Proceedings of the 1st workshop on Network
and system support for games, NetGames ’02, pages 53-57, New York, NY, USA, 2002. ACM.
ISBN 1-58113-493-2. doi: http://doi.acm.org/10.1145/566500.566508. URL http://doi.acm.
org/10.1145/566500.566508.

Felix C. Gértner. Fundamentals of fault-tolerant distributed computing in asynchronous environ-
ments. ACM Comput. Surv., 31:1-26, March 1999. ISSN 0360-0300. doi: http://doi.acm.org/
10.1145/311531.311532. URL http://doi.acm.org/10.1145/311531.311532.

Tan Hickson. Web storage — editor’s draft 27 april 2011, May 2011. URL http://dev.w3.org/
html5/webstorage/.

P J Leach and R Salz. Uuids and guids. internet draft draft-leach-uuids-guids-01.txt. internet

engineering task force, 1998.

Viktor Lidholt. Design and testing of a generic server for multiplayer gaming. Master’s thesis,
Uppsala, Sweden, 2002.

Haakan Mattsson, Hans Nilsson, and Claes Wikstrom. Mmnesia - a distributed robust dbms
for telecommunications applications. In PADL ’99: Proceedings of the First International
Workshop on Practical Aspects of Declarative Languages, pages 152-163, London, UK, 1998.
Springer-Verlag. ISBN 3-540-65527-1. URL http://portal.acm.org/citation.cfm?id=
645769.667766.

44

http://incubator.apache.org/thrift/static/thrift-20070401.pdf
http://incubator.apache.org/thrift/static/thrift-20070401.pdf
http://doi.acm.org.proxy.lib.chalmers.se/10.1145/1810891.1810910
http://doi.acm.org.proxy.lib.chalmers.se/10.1145/1810891.1810910
http://doi.acm.org/10.1145/1159789.1159792
http://www.theesa.com/facts/index.asp
http://www.theesa.com/facts/index.asp
http://doi.acm.org/10.1145/350391.350432
http://doi.acm.org/10.1145/566500.566508
http://doi.acm.org/10.1145/566500.566508
http://doi.acm.org/10.1145/311531.311532
http://dev.w3.org/html5/webstorage/
http://dev.w3.org/html5/webstorage/
http://portal.acm.org/citation.cfm?id=645769.667766
http://portal.acm.org/citation.cfm?id=645769.667766

6 BIBLIOGRAPHY

Marshall Kirk McKusick and George V. Neville-Neil. The Design and Implementation of the
FreeBSD Operating System. Pearson Education, 2004. ISBN 0201702452.

LLC Nash Information Services. U.s movie market summary 1995 to 2011, April 2011. URL
http://www.the-numbers.com/market/.

NetHack. Nethack information, April 2011. URL http://www.nethack.org/common/info.html|

T. Savor and R. E. Seviora. Hierarchical supervisors for automatic detection of software failures. In
Proceedings of the Eighth International Symposium on Software Reliability Engineering, ISSRE
97, pages 48—, Washington, DC, USA, 1997. IEEE Computer Society. ISBN 0-8186-8120-9.
URL http://portal.acm.org/citation.cfm?id=851010.856089.

Daniel Terdiman. World of warcraft battles server problems. cnet News, 04 2006.
URL http://news.cnet.com/World-of-Warcraft-battles-server-problems/2100-1043_
3-6063990.html.

45

http://www.the-numbers.com/market/
http://www.nethack.org/common/info.html
http://portal.acm.org/citation.cfm?id=851010.856089
http://news.cnet.com/World-of-Warcraft-battles-server-problems/2100-1043_3-6063990.html
http://news.cnet.com/World-of-Warcraft-battles-server-problems/2100-1043_3-6063990.html

	Introduction
	Background
	Purpose
	Challenges in developing the prototype
	Limitations of the prototype
	Method

	Theory behind the GGS
	Design of the GGS system
	Performance
	Choosing a network protocol
	UDP
	TCP
	HTTP
	The GGS Protocol

	Generic structure of the GGS
	Fault tolerance
	Availability
	Scalability
	Load balancing
	UUID

	Security
	Game Development Language in a Virtual Machine
	JavaScript
	Other languages
	JavaScript
	Other languages

	Testing
	JavaScript
	Other languages

	Implementation of a prototype
	Overview of the prototype
	The usage of Erlang in the GGS
	Short introduction to the Erlang syntax

	The modular structure of the GGS prototype
	The dispatcher module
	The player module
	The protocol parser module
	The coordinator module
	The table module
	The game virtual machine module
	The database module

	Communication with the GDL VM
	Exposing Erlang functionality to the GDL VM

	Techniques for ensuring reliability
	Supervisor structure
	Redundancy
	Hot code replacement

	Software testing
	Unit testing
	Automated test case generation

	Case studies
	Typical communication
	Initialization and life cycle of a game
	A GGS server application in JavaScript

	Problems of implementation
	JavaScript engine
	erlang_js
	erlv8

	Protocol design

	Results and discussion
	Statistics
	Future improvements
	Distribution
	Performance
	Documentation

	Conclusion
	Glossary

