UNIVERSITY OF GOTHENBURG

Reliable Generic Game Server

Niklas Landin
Richard Pannek
Mattias Pettersson

Jonatan Palsson

Abstract

This is the abstract!

Table of Contents

|Chapter 1 Introduction| . . 1
[1.1 Background | 2
1. Purposelo e 3
|I1.3 Challenges in developing the prototype|. 4
|I1.4 Limitations of the prototypel. 4
CE _Methodl o oo e e 5

|Chapter 2 Theory behind the GGS | . 6
2.1 Design of the GGS system| L 6
2.2 Performancel. 8

22.1 Performance measurementso L0000 8

2.3 Choice of network protocol|o oo 8
28 D 0 = 9
Z32 UDPl. . . o 9
R33 T TCPl . . o o e 9

A GenerTd . - . o e 9
25 Fault Tolerance| 10
2.6 Availability] 10
... 11
[2.7.1 Load balancing| o 11
2.7.2 UUIDI . . . e e 12

2.8 Security |. e 13
[2.8.1 Encryption| 13

2.9 Game Development Language in a Virtual Machine|. 13
[2.9.1 JavaScript|. 13
[2.9.2 Other languages| 14

0 = S 14

|Chapter 3 Implementation of a prototypel] 15

3.1 Overview of the prototype| 15
3.2 The usage of Erlang in the GGS| o oL 18
[3.2.1 Short introduction to the Erlang syntax| 19
3.3 Communication with external systems and applications| 20
[3.3.1 Exposing Erlang functionality to the GDL VM| 20

iii

0 TABLE OF CONTENTS

3.4 The modular structure of the GGS prototype| 22
[3.4.1 The dispatcher modulef.o oo oo oo 22
[3.4.2 The player module| 22
[3.4.3 The protocol parser module] oo 0oL, 23
3.4.4 The coordinator modulelo o 24
3.4.5 The table modulel. 25
[3.4.6 The game virtual machine modulef 25
3.4°7 The database modulel L Lo 25

3.5 Techniques for ensuring reliability | 0oL 26
[3.5.1 Supervisor structure |. 27
[3.5.2 Distributionl.o 28
[3.5.3 Hot code replacement| L oL 28

8.6 Implementation| 28

8.7 Example of a GGS server application in Javascript|00 28

|Chapter 4 Problems of implementation, 30

4.1 JavaScript engine| Lo 30
[4.1.1 erlang js| 30
4.1.2 erlv8l e 30
A3 TUUIDT. . o oo oo e e e e e 31
[4.1.4 Protocol design| 31

4.2 Design choices | 31

4.3 Understanding OTP|. 31

4.4 Usability]. o o o e 31

|Chapter 5 Results and discussion| 32

.1 Sottware development methodology|. 32
B2 Staffsticd o oo 32
.3 Future improvements|. 33
[5.3.1 Performancel 33

[6.3.2 Compatibility] 34
....................................... 34
|Chapter 6 Conclusion| . 35
... 35

iv

1 Introduction

Online gaming, and computer gaming in general has become an important part in many peoples
day-to day lives. A few years ago, computer games were not at all as popular as they are today.
With the advances in computer graphics and computer hardware today’s games are much more
sophisticated then they were in the days of NetHack, Zork, or Pacman.

The early computer games featured simple, or no graphics at all NetHack| [2011]. The games
often took place in a textual world, leaving the task of picturing the world up to the player. Multi-
player games were not as common as they are today, whereas most games today are expected to
have a multi-player mode, most early games did not.

Since these early games, the gaming industry have become much more influential in many ways.
Many advanced in computer hardware are thought to come from pressure from the computer game
industry. More powerful games require more powerful, and more easily available hardware. Due
to the high entertainment value of modern computer games, gaming has become a huge industry,
where large amounts of money are invested. The gaming industry is today, in some places even
larger than the motion picture industry. |Association| [2011], Nash Information Services| [2011]

Due to the increasing importance of computer gaming, more focus should be spent on improving
the quality of the gaming service. As more and more computer games are gaining multi-player
capabilities, the demands for multiplayer networking software rises. This thesis is about techniques
for improving the quality if this networking software.

The reliable generic game server, hereafter known as GGS, is a computer program designed
to host network games on one or more server computers. Hosting, in a network software setting,
means allowing client software connect to the server software, for the purpose of utilizing services
provided by the server. The GGS software provides games as a service, and the clients connecting
to the GGS can play these games on the GGS.

The idea of game servers is not new, network games have been played for decades. Early,
popular examples of network games include the Quake series, or the Doom games. Newer examples
of network games include World of Warcraft, and Counter-Strike. The difference between the GGS
and the servers for these games is that the servers for Doom, Quake, and the others listed, were
designed with these specific games in mind.

What GGS does is to provide a generic framework for developing network games. The frame-
work is generic in the sense that it is not bound to a specific game. There are many different
types of games, some are inheritly more time sensitive than others, strategy games are examples
of games which are not very sensitive to time delays, first-person shooters however, can be very
sensitive.

The generic nature of the GGS allows the creation of many different types of games, the
motivation behind this is to remove the neccessity of writing new game servers when developing
new games.

The GGS is in addition to being generic, also reliable in the sense that the gaming service

provided is consistant and available. A consistant and available server is a server that handles

1 CHAPTER 1. INTRODUCTION

hardware failiures and software failiures gracefully. In the event of a component breaking within

the GGS, the error is handled by fault recovery processes, thereby creating a more reliable system.

1.1 Background

The game industry is a quickly growing industry where the need for new techniques is large.
One specific section where the development has stalled is the game server section. The existing
game servers are functional but they lack good fault tolerance and the ability to scale well. Users
will notice this in low uptime and many crashes. This is a problem that has existed and been

resolved in other industries. In the telecom industry solutins to similar problems have been found.

A common figure often used in telecoms is that of the nine nines, referring to 99.999999999%
of availability, or rougly 15ms downtime in a year . The level of instability and bad fault tolerance
seen in the game server industry would not have been accepted in the telecoms industry. This level
of instability should not be accepted in the game server industry either. An unavailabvle phone
system could potentially have life threatening consequences, leaving the public unable to contant
emergency services. The same can not be said about an unavailable game server. The statement
that game servers are less important than phone systems is not a reason not to draw wisdom from
what the telecoms have already learnt.

Moving back to the gaming industry. The main reason to develop reliable servers are monetary,
it is important for game companies to expand its customer base. Reliable game servers are one
improvement that will create a good image of a company. In general the downtime of game servers
is much higher than the downtime of telecom system . The structure of the system is similar in
many ways and it should be possible to reuse solutions from the telecom system to improve game
servers.

In the current state game servers are developed on a per-game basis, in many cases this seems
like a bad solution. Developers of network game need to understand network programming. A
way to change this is a generic game server which give the game developers a server which they
implement their game towards. This approach would not only make it easier to develop network
games, it would also allow games in different programming languages to be implemented using the
same server.

Some factors key to the development of GGS have been isolated. Many of these come from
the telecom sector. The factors are scalability, fault tolerance and being generic. These terms are
defined below.

Scalability (see [2.7) in computer science is a large topic and is commonly divided into sub-
fields, two of which are structural scalability and load scalability Bondi [2000]. These two issues
are addressed in this thesis. Structural scalability means expanding an architecture, e.g. adding
nodes to a system without requiring modification of the system. Load scalability means using the
available resources in a way which allows handling increasing load, e.g more users, gracefully.

Fault tolerance (see 2.5 is used to raise the level of dependability in a system, so that the de-
pendability is high even in presence of errors. Dependability is defined as the statistical probability

of the system functioning as intended at a given point in time. Fault tolerance is defined as the

1 CHAPTER 1. INTRODUCTION

property of a system to always follow a specification, even in the presence of errors. The specifica-
tion could take the form of error handling procedures which activate when an error occurs. This
means that a fault tolerant, dependable system, will have a very high probability of functioning at
a given point in time, and is exactly what is desired. |Gértner| [1999]

A generic (see game server has to be able to run different client-server network games
regardless of the platform the clients are running on. It runs network games of different type. A
very rough separation of games is real time games and turn based games.

The server behaves in a way similar to an application server, but is designed to help running
games. An application server provides processing ability and time, therefore it is different from a
file- or print-server, which only serves resources to the clients.

The most common type of application servers are web servers, where you run a web application
within the server. The application server provides an environment and interfaces to the outer world,
in which applications run. Hooks and helpers are provided to use the resources of the server. Some
examples for web application servers are the Glassfish server which allows running applications
written in Java or the Google App Engine where you can run applications written in Python or
some language which runs in the Java Virtual Machine. An example of an application server not
powering web applications, but instead regular business logic, is Oracle’s TUXEDO application
server, which can be used to run applications written in COBOL, C++ and other languages.

A database server can also be seen as an application server. Scripts, for example SQL queries
or JavaScript, are sent to the server, which runs them and returns the evaluated data to the clients.

One of the purposes of this thesis is to investigate how we can make a game server as generic
as possible. Some important helpers are discussed, such as abstraction of the network layer, data
store and game specific features.

As an aid in discussing the theoretical parts of the GGS a prototype has been developed. The
prototype does not feature all of the characteristics described in this thesis. A selection has been
made among the features, and the most important ones have been implemented either full or in
part in the prototype.

The choice of implementation language for the prototype of the GGS was made with inspiration
from the telecom industry. The Erlang language was developed by the telecom company Ericsson
to develop highly available and dependable telecom switches. One of the most reliable systems ever
developed by Ericsson, the AXD301 was developed using Erlang. The AXD301 is also possibly has
the largest code base even written in a functional language |[Armstrong), 2003]. The same language
is used to develop the prototype of the GGS. Usage of Erlang in the GGS is discussed in further

detail in section [3.2] Chapter provides a description of the prototype developed for
this thesis.

1.2 Purpose

The purpose of creating a generic and fault tolerant game server is to provide a good framework
for the development of many different types of games. Allowing the system to scale up and down is
a powerful way to maximize the usage of physical resources. By scaling up to new machines when
load increases, and scaling down from machines when load decreases costs and energy consumption

can be optimized.

1 CHAPTER 1. INTRODUCTION

Fault tolerance is important for the GGS in order to create a reliable service. The purpose of
a reliable game server is to provide a consistant service to people using the server. Going back to
the telecom example, the purpose of creating a reliable telecom system is to allow calls, possibly
emergency calls, at any time. Should the telecom network be unavailable at any time, emergency
services may become unavailable, furthermore the consumer image of the telecom system degrades.

Returning to the game industry, emergency services will not be contacted using a game server,
however an unavailable server will degrade the consumer image of the system. Consider an online
casino company. The online casino company’s servers must be available at all times to allow
customers to play. If the servers are unavailable, customers can not play, and the company loses

money. In this scenario, an unavailable server can be compared to a closed real-world casino.

1.3 Challenges in developing the prototype

The word generic in the name of the GGS implies that the system is able to run a very broad
range of different code, for instance code written in different programming languages, in addition
to a broad range of different game types. In order to support this, a virtual machine (VM) for
each game development language (hereafter GDL for brevity) is used.

No hard limit has been set on which languages can be used for game development on the GGS,

but there are several factors which decide the feasibility of a language:
e How well it integrates with Erlang, which is used in the core the GGS system
e How easy it is to send messages to the virtual machine of the GDL from the GGS
e How easy it is to send messages from the GDL VM to the GGS

Internally, the GDL VM needs to interface with the GGS to make use of the helpers and tools that
the GGS provides. Thus an internal API has to be designed for use in interacting with the GGS.
This API is ideally completely independent of the GDL, and reusable for any GDL.

The communication with gaming clients has to take place over a protocol. Ideally a standard
protocol should be used, in order to shorten the learning curve for developers, and also make the
system as a whole less obscure. A large challenge during this project is to decide whether an
existing protocol can be used, and if not, how a new protocol can be designed which performs
technically as desired, while still being familiar enough to existing developers.

A great deal of work is devoted to make the GGS reliable. This includes ensuring that the
system scales well, and to make sure it is fault tolerant. In order to facilitate scalability, we need a

storage platform which is accessible and consistent among all of the GGS, this is also investigated.

1.4 Limitations of the prototype

The implementation of the GGS protocol, together with storage possibilities, server capacity,
and game language support imposes some limitations on the project. To get a functional prototype
some limits must be set on the types games that can be played on the prototype.

The UDP protocol is not supported for communication between client and server. The TCP
protocol was chosen in favour of UDP, due to the fact that the implementation process using TCP
was faster than if UDP would have been used. UDP is generally considered to be faster than TCP

1 CHAPTER 1. INTRODUCTION

for the transfer of game (and other) related data, this is discussed in more depth in
In short, the decision of using TCP means that games that requires a high speed protocol will
not be supported by the GGS prototype. Another limitation necessary to set on the system is the
possibility to have huge game worlds due to the implementation of the scaling mechanism in the
prototype.

In real time games all players are playing together at the same time. Latency is a huge problem
in real time games, a typical round trip time for such games is one of 50 to 150ms and everything
above 200ms is reported to be intolerable [Farber| [2002]. Latency sensitive games include most
of the first person shooters with multiplayer ability, for example Counter Strike or massively
multiplayer online role playing games (MMORPG:s), for example World of Warcraft.

In turn based games each player has to wait for their turn. Latency is not a problem since the
gameplay does not require fast interactions between the players, long round trip times will not be
noticed. Examples of turn based games include board and card games, as well as multiplayer games
like Jeopardy. Both game types have varying difficulties and needs when it comes to implementing
them, a Generic Game Server should address all of them and help the developer to accomplish his
goal.

Due to the limited capability of threading in many GDL VM:s, the GGS prototype will not
support MMORPG:s.

The implementation of the GGS described in this thesis is only a small prototype and tests
will be performed on simple games like pong or chess, thus there are no need to implement more
advanced features in the system. It is important to note that these limitations only apply for the
prototype of the project, and that further developments to the GGS could be to implement these

features.

1.5 Method

A prototype was developed early on in the project in order to carry out experiments. Using
this prototype, the system was divided into modules. A demand specification was created, using
this specification, the modules were easily identifiable.

The first prototype of the GGS consisted of simple modules, however, due to the separation of
concerns between the modules, they were easily independantly modified and improved.

Once the basic structure of the GGS had been established, the first prototype was removed,
remaining was the structure of the modules and the internal flow of the application. This could
be seen as an interative workflow, with the first prototype being the first iteration. The second
iteration later became the final result of the GGS.

The layout of the GGS is both layered and modular. The first layer handles the most primitive
data and produces a higher level representation of the data, passing it along to different modules
of the GGS. The modular structure of the GGS plays an important role in making the system fault
tolerant. The approach to fault tolerance is by replication, and restarting faulting modules with
the last known good data.

An informal specification and list of requirements of the system was outlined early on in the
project. Usaility goals for developers were set. During the project several demo applications were

constructed, by constructing these applications, the usability goals were enforced.

2 Theory behind the GGS

In this chapter, the theory behind the techniques used in the GGS are discussed. Performance
issues and the measuring of performance is discussed. Benchmarking techniques are discussed. The
options when choosing network protocols are given, along with a discussion of each alternative.

Finally, a overview of scalability, fault tolerance and availability is presented.

2.1 Design of the GGS system

The GGS is modelled after a real world system performing much of the same duties as GGS.
This is common practice [Armstrong, |2011] in the computer software world, in order to understand
complex problems more easily. While there may not always be a real world example of a system
performing th exact duties of the system being modelled in the computer, it is often easier to
create and analyze requirements for real world systems and processes than systems existing soley
in a computer. The requirements and limitations imposed on the real-world system can, using the
proper tools, be transferred in to the software.

The real world system chosen for the GGS is a “Chess club” - a building where chess players
can meet and play chess. Since a real-world scenario is readily available, and to such a large extent
resembles the computer software required for the GGS, the next step in developing the GGS system
is to duplicate this real world scenario in a software setting.

Some requirements, limitations and additions were made to the chess club system, so that the
system would more easily and efficiently be replicated in a software setting.

In the text below, two examples will be presented. On example is that of a real-world chess

club, in which players meet to play chess against each other, the other example is the GGS, and

how it corresponds to this chess club. In figure[2.T on the following pagela graphical representation

for the chess club is presented. The club is seen from above. The outermost box represents the
building. In the GGS setting, the building would represent one instance of GGS. Several buildings
linked together would represent a cluster of GGS instances. In order for a player (the P symbol
in the graphic) to enter the theoretical chess club, the player must pass by the entrance. By
having each player pass by the entrance, a tally can be kept, ensuring that there are not too many
players within the building. In the GGS setting, too many players entering would mean too many
connections have been accepted to the GGS system, and that the structure of the system thus
must be modified, adding additional servers.

Once a player has been allowed in to the chess club the player is greeted by the host of the
chess club, in the GGS setting represented by the Coordinator, and is seated by a table. The
coordinator keeps track of all the players in the building, and all moved made by the players. The
information available to the coordinator means that cheating can be monitored and book keeping
can be performed by this entity.

Moves by players are made using the tables present in the chess club. Every game is isolated to
a table, just as expected. This means that communication during a game only has to pass by the

players of that particular game, and the coordinator, making sure that no cheating takes place.

2 CHAPTER 2. THEORY BEHIND THE GGS

:

® ®

Entrance

Figure 2.1: The layout of a physical “Chess club” with two players (P) sitting by each chess table
(Table), a coordinator keeps track of all moves and players in the building. A player has to pass
by the entrance to enter or exit the building. The building is represented by the outermost box.

This isolation of the games plays an imporant part in many properties of the GGS, the isolation
means that games can for example be transferred between different chess clubs, furthermore, if
cheating takes place, corruption can only occur in the particular table where it was found, and can
not spread.

Moving chess players from one location to another is one of the alterations made to the real world
chess club system to make the system more appropriate for a software setting. Allowing games
to be transferred is not a property usually desired in a real world chess club, where transferring
players would mean moving the players from one building to another. In the software setting,
moving players means moving the game processes from one system to another, perhaps to balance

the system load. This transfer of players can occur transparently, without notifying the players.

The simplified life cycle of a game in GGS can be viewed using algorithm [2.1 on the next pagel

In order to make this life cycle as efficient and useful as possible, the scalability, fault tolerant and
generic traits are added to the GGS. These are not shown in the algorithm, as these traits are tools
in making the algorithm behave as efficient as possible, and are not the main focus when studying

the life cycle of a game.

The limits imposed in [2.1 on the following page| are arbitrary for this example, there are no

limits in the GGS on the number of players connecting, for example.

2 CHAPTER 2. THEORY BEHIND THE GGS

Algorithm 2.1 A very simple example of the flow through the GGS system when a game played.

1: while players < 2:

2: if a player connects, call connected

3: while the game commences:

4: call the function game

5: when the game has stopped

6: call the function endGame

7: function connected:

8 assign the new player an id

9 alert the coordinator of the new player

10: if a free table does not exist:

11: the coordinator creates a new table

12: the coordinator places the player by the table, and begins watching the player
13: function game:

14: perform game-specific functions. In chess, the rules of chess are placed here
15: function endGame:

16: alert the coordinator, de-registering the players

17: disconnect the players from the system, freeing system resources

2.2 Performance

There are many ways in which performance could be measured. For the clients, time and
response times are useful measurements in time critical settings. In non-time critical settings, the
reliability of message delivery may be an even more important factor than speed.

In a first person shooter game, the speed of delivery of messages is essential. Failiure to deliver
messages in time results in choppy gameplay for the players. In strategy games, the reliability of
delivery may be more important than the speed, since the game is not percieved as choppy even if
the messages are delayed.

For someone operating a GGS, it is perhaps more interesting to measure the system load,
memory consumption, energy consumption and network saturation. These topics are discussed in
theory in this section. The practical results for the prototype are discussed in chapter

2.2.1 Performance measurements

How many players can we have on a server? Performance differences between games? e.g can
one game have thousands players on a server and another only have hundreds? Questions

In the current state game servers is coded for each game that needs it, in many cases this seems
like a bad solution. Developers that want to make a network game need to understand network
programming. A way to change this is a generic game server which give the game developers a
server which they implement their game towards. This approach would not only make it easier
to develop network games, it would also allow games in different programming languages to be

implemented using the same server. to be discussed here.

2.3 Choice of network protocol

There are three main ways in which computer communication over the Internet usually takes
place; TCP, UDP and HTTP. The first two are transport layer protocols, which are commonly
used to transport application layer protocols, such as HTTP. TCP and UDP can not be used on

2 CHAPTER 2. THEORY BEHIND THE GGS

their own, without an application layer protocol on top. Application layer protocols such as HT'TP

on the other hand needs a transport layer protocol in order to work.

2.3.1 HTTP

Since HTTP is so widely used on the Internet today in web servers, it is available on most
Internet connected devices. This means that if HTTP is used in the GGS, firewalls will not pose
problems, which is a great benefit. However, due to the intended usage of HTTP in web servers,
the protocol was designed to be stateless and client-initiated. In order to maintain a state during
a game session using HTTP, some sort of token would have to be passed between client and server
at all times, much like how a web server works. These facts combined makes HTTP unsuitable
for our purposes, since the GGS requires a state to be maintained throughout a session, and also
needs to push data from the server to clients without the clients requesting data. It should also
be mentioned that HTTP uses the TCP protocol for transport, and what is said about TCP also
applies to HTTP.

2.3.2 UDP

Many online games use UDP as the carrier for their application layer protocol. UDP moves
data across a network very quickly, however it does not ensure that the data transferred arrives in
consistent manner. Data sent via UDP may be repeated, lost or out of order. To ensure the data
transferred is in good shape, some sort of error checking mechanisms must be implemented. UDP
is a good choice for applications where it is more important that data arrives in a timely manner
than that all data arrives undamaged, it is thus very suitable for media streaming, for example.
In the GGS reliability of transfer was chosen before the speed of the transfer, ruling out UDP as

the transport later protocol.

2.3.3 TCP

For reliable transfers, TCP is often used on the Internet. Built in to the protocol are the error
checking and correction mechanisms missing in UDP. This ensures the consistency of data, but
also makes the transfer slower than if UDP had been used. In the GGS, data consistency is more

important than transfer speeds, and thus TCP is a better alternative than UDP.

2.4 Generic

The GGS is a game server. It was made with a desire to be suitable for any kind of game.
Any game with a client-server behaviour should be perfectly suited for GGS. A game should not
only be able to vary in terms of genre, graphics, gameplay etc, but also in the way the game is
implemented. Such as different programming languages. The GGS should be OS independent and
run on Windows, OSX and Linux. The GGS can be run as a listen server on the players computer
and host games locally. It could also be a dedicated server running on independent hardware. It
is meant to run any game in any environment in any way desired, therefor being as generic as

possible.

2 CHAPTER 2. THEORY BEHIND THE GGS

2.5 Fault Tolerance

Fault tolerance is an important factor in all servers, a server that is fault tolerant should be able
to follow a given specification when parts of the system failures. This means that fault tolerance
is different in each system depending on what specification they have. A system could be fault
tolerant in different aspects, one is where the system is guaranteed to be available but not safe and
it could also be reversed, that the system is safe but not guaranteed to be available. Depending
on the system one property may be more important(some example here). A system could also
have non existent fault tolerance or it could be both safe and guaranteed to be available. It should
be noted that it is not possible to achieve complete fault tolerance, a system will always have a
certain risk of failure. With this in mind the goal is to make the GGS prototype as fault tolerant
as possible.

In order to make the GGS prototype fault tolerant the programming language Erlang has been
used. Erlang will not guarantee a fault tolerant system but it has features that support and
encourage the development of fault tolerant systems. In the GGS it is important that the system
overall is fault tolerant. Crashes of the whole system should be avoided as this would make the
system unusable for a time. By using supervisor structures it is possible to crash and restart small
parts of the system, this is convenient as fault can be handled within small modules thus never
forcing a crash of the system.

The need for fault tolerance in game servers is not as obvious as it may be for other typ of
servers. In general all servers strive to be fault tolerant as fault tolerance means more uptime
and a safer system. This applies to game servers aswell, in brief good fault tolerance is a way
of satisfying customers. In general, game servers differ from many other fault tolerant systems
in that high-availability is more important than the safety of the system. For example a simple
calculation error will not be critical for a game server but it may be in a life-critical system and
then it is better that the system crashes than works with the faulty data. There are cases where

safety may be critical in game servers, one example is in games where in-game money exist.

Performance penalties

2.6 Availability

One important factor of any server is the availability. A server to which you are unable to
connect to is a useless server. Other then within telecomunication, their uptime is of about
99,9999999%, the game developer community hasn’t approched this problem very genuinely yet so
there is much room for improvement.

There are several good papers on how to migrate whole virtual machines between nodes to
replicate them but for the GGS a different approach has been chosen. Instead of just duplicating a
virtual machine, the programming language Erlang has been used which offers several features to
increase the availability. Some of them are hot code replacement, where code can be updated while
the application is running and without the need to restart it, the supervisor structure provided by
OTP and the inter node and process communication via messages instead of shared memory. We

will discuss each of them later on.

10

2 CHAPTER 2. THEORY BEHIND THE GGS

2.7 Scalability

Fach instance of the GGS contains several tables. Each table is an isolated instance of a game,
for example a chess game or a poker game. The way that the GGS scales is to distribute these
tables on different servers. In many games it is not necessary for a player to move between tables
during games. This is for example not a common occurrence in chess, where it would be represented
as a player standing up from her current table and sitting down at a new table, all within the same
game session. With this in mind, the main focus of the GGS is not to move players between tables,
but to keep a player in a table, and to start new tables instead. When a server has reached a
certain amount of players the performance will start to decrease. To avoid this the GGS will start
new tables on another server, using this technique the players will be close to evenly distributed
between the servers. It is important to investigate and find out how many players that are optimal
for each server. This approach makes it possible to utilize all resources with moderate load, instead
of having some resources with heavy load and some with almost no load.

As mentioned in the purpose section there are two different types of scalability, structural
scalability and load scalability. To make the GGS scalable both types of scalability are needed.
Structural scalability means in our case that it should be possible to add more servers to an
existing cluster of servers. By adding more servers the limits of how many users a system can have
is increased. Load scalability in contrast to structural scalability is not about how to increase the
actual limits of the system. Instead it means how good the system handles increased load. The
GGS should be able to scale well in both categories.

2.7.1 Load balancing

The need for load balancing varies between different kind of systems. Small systems that only
use one or a couple of servers can cope with a simple implementation of it, while in large systems
it is critical to have extensive and well working load balancing. The need also depends on what
kind of server structure that the system works on. A static structure where the number of servers
are predefined or a dynamic structure where the number varies.

Load balancing and scaling is difficult in different scenarios. When running in a separate server
park, there are a set number of servers available, this means that an even distribution on all servers
is preferable. When running the GGS in a cloud, such as Amazon EC2, it is possible to add an
almost infinite number of servers as execution goes on. In this cloud setting, it may be more
important to evenly distribute load on newly added servers.

Two methods of balancing load (increasing structure):
e Fill up the capacity of one server completely, and then move over to the next server

e Evenly distribute all clients to all servers from the beginning, when load becomes too high

on all of them, then comes a new problem:
— How do we distribute load on these new servers?

Load balancing is a key component to achieve scalability in network systems. The GGS is a
good example of a system that needs to be scalable, to attain this load balancing is necessary.

Optimization of the load balancing for a system is an important task to provide a stable and

11

2 CHAPTER 2. THEORY BEHIND THE GGS

Algorithm 2.2 A simple (insufficient) generator for identifiers

1: global variable state := 0
2: function unique

3: state := state + 1

4: return state

fast load balancer. There are certain persistence problems that can occur with load balancing, if a
player moves from a server to another data loss may occur. This is an important aspect to consider
when the load balancer is designed and implemented.

Load balancing can often be implemented using dedicated software, this means that in many
applications load balancing may not be implemented because it already exist functional solutions.
This depends on what specific needs the system have and a minor goal of the project is to analyze
whether the GGS project can use existing load balancing tools or if it is necessary to implement

load balancing in the project.

2.7.2 UUID

Inside the GGS, everything has a unique identifier. There are identifiers for players, tables
and other resources. When players communicate amongst each other, or communicate with tables,
they need to be able to uniquely identify all of these resources. Within one machine, this is
mostly not a problem. A simple system with a counter can be imagined, where each request for a
new ID increments the previous identifier and returns the new identifier based off the old one, see
algorithm[2.2] This solution poses problems when dealing with concurrent and distributed systems.
In concurrent systems, the simple solution in algorithm [2:2] may yield non-unique identifiers due
to the lack of mutual exclusion.

The obvious solution to this problem is to ensure mutual exclusion by using some sort of lock,
which may work well in many concurrent systems. In a distributed system, this lock, along with
the state, would have to be distributed. If the lock is not distributed, no guarantee can be made
that two nodes in the distributed system do not generate the same number. A different approach
is to give each node the ability to generate Universally Unique Identifiers (UUID), where the state
of one machine does not interfere with the state of another.

According to [Leach and Salz [1998], “A UUID is 128 bits long, and if generated according to
the one of the mechanisms in this document, is either guaranteed to be different from all other
UUIDs/GUIDs generated until 3400 A.D. or extremely likely to be different”. This is accomplished
by gathering several different sources of information, such as: time, MAC addresses of network
cards, and operating system data, such as percentage of memory in use, mouse cursor position and
process ID:s. The gathered data is then hashed using an algorithm such as SHA-1.

When using system wide unique identifiers, such as the ones generated by algorithm with
mutual exclusion, it is not possible to have identifier collisions when recovering from network
splits between the GGS clusters. Consider figure [2:2] where Site A is separated from Site B by a
faulty network (illustrated by the cloud and lightening bolt). When the decoupled node and the
rest of the network later re-establish communication, they may have generated the same ID:s if
using algorithm 2.2 even when mutual system-wide exclusion is implemented. This is exactly the
problem UUID:s solve.

12

2 CHAPTER 2. THEORY BEHIND THE GGS

Q

}{O O Game client

—> Network

k Demaged network

Figure 2.2: An example of a network split

2.8 Security

We only support languages running in a sandboxed environment. Each game session is started
in its own sandbox. The sandboxing isolates the games in such a way that they can not interfere
with each other. If sandboxing was not in place, one game could potentially modify the contents
of a different game. A similar approach is taken with the persistent storage we provide. In the
storage each game has its own namespace, much like a table in a relational database. A game is
not allowed to venture outside this namespace, and can because of this not modify the persistent

data of other games.

2.8.1 Encryption

2.9 Game Development Language in a Virtual Machine

There is only a very limited number of game developers who would like to write their games
in Erlang, therefore we had to come up with something to resolve this problem. The main idea
was to offer a replacable module which would introduce a interface to different virtual machines
which would run the game code. This way a game developer can write the game in his favourite

language while the server part still is written in Erlang and can benefit from all of its advantages.

2.9.1 JavaScript

JavaScript has gained a lot of popularity lately, it is used in large projects such as Ria/ﬂ7
CouchDHﬂ On the popular social coding site GitHub.com, IS%E] of all code is written in JavaScript.

The popularity of JavaScript in the programming community, in combination with the availability

Ihttp://wiki.basho.com/An-Introduction-to-Riak.html
%http://couchdb.apache.org
3during the writing of the thesis the percentage went up to 19% https://github.com/languages/

13

http://wiki.basho.com/An-Introduction-to-Riak.html
http://couchdb.apache.org
https://github.com/languages/

2 CHAPTER 2. THEORY BEHIND THE GGS

of several different JavaScript virtual machines was an important influence in choosing JavaScript

as the main control language for our GGS prototype.

2.9.2 Other languages

Other languages like lua, ActionScript are suitable as well because there is a virtual machine for
each of them which can be “plugged in” into our GDL VM interface. With help of the Java Virtual
Machine or the .NET environment it is even possible to run nearly every available programming
language in a sandbox as a GDL.

Due lack of time we have decided to use just the Erlang <-> JavaScript bridge with our

interface.

2.10 Testing

There are several ways in which the GGS can be tested. The most important aspect has been
deemed to be the experience players have when using the GGS. In order to test the user experience
of the GGS, a realistic usage scenario has to be set up.

The GGS is intended to be used for powering games which have many concurrent players. The
players need not participate in the same instance of the game, games such as chess are prime
candidates for the GGS.

When developing the GGS, two main categories of games exhibiting different performance
demands were identified; real-time games and turn-based games. The real-time games were deemed
more demanding than the turn based games. Tests were carried out using a real time game, since
this is the more demanding type of games.

The real time game chosen for testing the GGS is Pong, a game in which two players play a
game involving a all and two paddles. The goal for each player is to shoot eside the othre player’s
paddle while not allowing the ball to pass by her own paddle. The game requires real time updates
and is quite demanding when played in several instances concurrently.

There has been some work on the area of testing game servers, see|Lidholt| [2002], who describes
a test bench using bots for testing his generic hazard-gaming server. Lidholt describes how his
server, capable of running several different casino games is tested using artificial players, so called
bots. Performance is measured in “number of clients” able to connect to the server, and the system
load.

Similar tests were performed on the GGS, and the results of these tests are visible in chapter
Bl The tests were initially performed by starting an operating system process for each player. Due
to lack of hardware, not enough player processes could be started in this way. The bots were
re-written in Erlang, and due to Erlang’s light weigh threads, enough processes could be created

to successfully test the server.

14

3 Implementation of a prototype

This chapter contains the realization of much of the principles and techniques described in
chapter Here the problems and their solutions are discussed in greater detail, and at
times the text becomes more specific to GGS.

Much of what is discussed in this chapter has been implemented in the Erlang GGS prototype.
Specific solutions such as supervisor structures and distribution of erlang nodes on physical nodes.
The different means of communications within the GGS and outside the GGS with third parties

are also discussed here.

3.1 Overview of the prototype
The prototype of the GGS was developed using the Erlang language. The functional and con-

current style of Erlang facilitates devlopment of software based on a real-world model |[Armstrong,
2011]. In Erlang, most things are processes. The software running the Erlang code is known as the
Erlang machine, or an Erlang node. Each Erlang node is capable of running several threads (also
known as Light Weight Processes; LWP), much like the threads in an operating system. Threads in
a Linux system, for example, are treated much like operating system processes in different systems.
Due to the size of datastructures related to each process, swapping one process for another (known
as context switching) is an expensive task in many systems [McKusick and Neville-Neil, 2004, pg
80].

The cost of swapping operating system processes becomes a problem when many processes
are involved. If the GGS system had been developed using regular operating system processes, it
would have had to be designed in a way to minimize the number of processes. Using Erlang, which
is capable of running very many processes, several times more than an operating system can, the
mapping between the real world system (described in becomes clearer.

Erlang allows the GGS to create several process for each player connecting, these processes can
handle a multitude of different tasks, parsing data for example. Since each task is handled by a
different process, the tasks are clearly separated and the failiure of one is easily recovered without
affecting the others.

In addition to creating (or spawning) processes specifically to handle new players connecting,
the GGS has more permanent processes running at all times. The constantly running processes in
the GGS system are called modules. An example of a module in the GGS is the dispatcher module,
which handles the initial connection made by a client, passing the connection along further in to

the system.

In figure[3.1 on the following page|the entire GGS system is represented graphically. The circles

marked with ’C’ topmost in the picture represent game clients. These circles represent processes
running on gamers’ computers, and not on the GGS machine. If a game of chess is to be played on
the server, the clients on the gamers’ machines will be chess game clients. Clients connect through

a network, pictured as a cloud, to the dispatcher process in the GGS. The dispatcher process and
all other modules are discussed in For each connection, a new player process is

15

3 CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE

AL Q@ () (2

/

/ E ewan S

/

Direct connection

& Dispatcher

Protocol parser

Spawns new

= =
w Backup
\

Direct conQection
Mnesia

Pid <-> UUID Quarantine

Figure 3.1: The layout of the GGS. The circles marked with ’C’ topmost in the picture represent
clients. The cloud marked ’'network’ pictured directly below the clients can be any network, for
example the Internet. The barell figure marked 'backup’ is a process being fed backup data from
the coordinator. The barell marked 'State’ contains the state of a table, and this is fed into the
box marked "Mnesia’ which is database. Finally the figure shaped as a shield marked 'GameVM’
contains the actual game process.

16

3 CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE

spawned, which immediately after spawning is integrated in to the GGS by the coordinator process.

17

3 CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE

3.2 The usage of Erlang in the GGS

Erlang was designed by Ericsson, beginning in 1986, for the purpose of creating concurrent
applications and improving telecom software. Features essential for the telecom instustry to achieve
high availability in telecom switches were added to the language.

Erlang uses message passing in favour of shared memory, mutextes and locks, something which
at the time was controversial among fellow developers |[Armstrong [2010]. The reason for using
message passing, according to Armstrong, was that applications should operate correctly before
optimizations are done, where efficient internal communication within the Erlang machine was
considered a later optimization.

In using message passing in favour of the methods commonly used at the time, the issues
commonly associated with shared memory and locking were avoided. In Erlang, everything is a
process, and everything operates in its own memory space. Memory can not be shared among
processes, which prohibits a process from corrupting the memory of a different process.

Messages are sent between the processes in an asynchronous manner, and each process has a
mailbox in which these messages can be retrieved.

Processes in Erlang are also called Light Weight Processes. The Erlang processes are very
cheaply created. Processes exist within an Erlang machine, or Erlang node. The Erlang machine
has its own scheduler and does not rely on the operating system’s scheduler, this is a main reason
of Erlang’s capability of running many concurrent processes [Armstrong| [2003)].

The strong isolation of Erlang processes make them ideal for multicore and distributed systems.
Distribution of software is included as a fundamental part in the Erlang language. The ’physical’
location of a process, e.g. which computer the process runs on, is not important when communi-
cating with the process. Processes can communicate regardless of whether they run on the same
system of not, transparently.

The distributed nature of Erlang is something the GGS makes use of when scaling across several
computers in order to achieve higher performance. The distribution is also important in creating
redundancy. Erlang promotes a non-defensive programming style in which processes are allowed to
crash and be restarted in favour of having the processes recover from errors. The distributed nature
of Erlang means supervisor processes (discussed in section [3.5.1)) can reside on remote systems,
thereby increasing the reliability of the system as a whole.

A very important feature of Erlang, used in the GGS, is the ability to interface with exter-
nal hardware and software. Erlang allows communication with external resources through ports.
Through ports communication can take place much in the same way communication is performed
over sockets.

The GGS uses Erlang ports for generating UUID:5E| and for interfacing with the virtual machines
of gamed?’}

Development of the GGS would have been hard if not impossible had it not been for the OTP
supplied with the standard Erlang distribution. The OTP (Open Telecom Platform) is a set of
standard libraries and design patterns, called behaviours, which are used when developing Erlang

systems.

lUUID:s are discussed in section
2Virtual machines of games are discussed in section

18

3 CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE

The GGS makes heavy use of the behaviours supplied in the OTP. The behaviours impose a
programming style suitable for distributed and concurrent applications, perfectly suitable for the

GGS. In particular, the GGS uses the following behaviours:

e The supervisor behaviour, which is used when creating a supervisor. Supervisors are used
when monitoring processes in the Erlang system. When a process exits wrongfully, the
supervisor monitoring the process in question decides which action to take. In the GGS, the
most common action is simply to restart the faulting process. A more thorough discussion

on supervisors can be found in section [3.5.1}

e The gen_ tcp behaviour, which is used to work with TCP sockets for network communication.
Using the gen_tcp behaviour, network messages are converted to internal Erlang messages

and passed to a protocol parser, where the messages are processed further.

e The gen_ server behaviour, which is used when constructing OTP servers in Erlang. Using
this behaviour, a state can easily be kept in a server process, greatly increasing the usefulness
of the server process. There are many gen_ servers in the GGS, it is the most widely used
behaviour in the project. In addition to intruducing a state to the server, the gen_ server
behaviour also imposes patterns for synchronous and asynchronous communication between

other gen_ servers and other OTP behaviours.

e The gen_ fsm behaviour is used in one module in the GGS, the protocol parser. Using the
gen_ fsm behaviour, finite state machines are easily developed. Protocol parsers are an ideal
example of where to use finite state machines, which are widely used for parsing strings of

text.

In addition to supplying behaviours, the OTP also has a style for packaging and running Erlang
applications. By packaging the GGS as an application the GGS can be started in a way uniform
to most erlang software, providing familiarity for other Erlang users, and eases the incorporation

of the GGS in other applications.

3.2.1 Short introduction to the Erlang syntax

In order to understand examples in this thesis, a small subset of Erlang must be understood.

In this section, the very syntactic basics of Erlang are given.

e Variables start with an uppercase letter, examples include X, Var, and Global. A variable

can only be assigned once.
e Atoms start with lower case letters, for example: atom, a.

e Functions are defined starting with an atom for the name, parenthesis containing parame-
ters, an arrow, a function body and finally a dot marking the end of a function. square (X)

-> XxX. is an example of a function producing the square of X.

e Functions are called by suffixing an atom with the function name with parenthesis, for exam-

ple square(10). Qualified names can be specified using ’:’, for example: math:square(10).

19

3 CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE

Tuples are containers of fixed type for Erlang data types. They are constructed using curly

brackets, for example: {atoml, atom2, atom3}.

Lists are constructed using [and |, for example: [1,2,3].

Strings doubly qouted lists of characters, for example "Hello world".

Records are erlang tuples coupled with a tag for each tuple element. This allows refering to

elements by name instead of by position. An example of a record looks like this: #myRecord.

3.3 Communication with external systems and applications

A game launched on the GGS is run within a virtual machine. For each programming language
supported, there is a virtual machine that interprets the game. Furthermore an interface for
communication between the GGS, the game and the players playing the game must be present.

The reason for the GGS requiring a communication channel between the game VM and Erlang
is in part because the GGS makes heavy use of callbacks. Callbacks written in Erlang are registered
to the VM for the interface to work. It is only with the help of the interface that the game developer
can access the game state and send messages between players. The interface provides access to
three objects called world, player and localstorage. The game state is safely stored in a database
and retrieved for manipulation by a call for the world object. Interaction with the players is done
the same way using the player object instead. The localstorage is a convenient way to store globals
and other variables seperated from the game state. Unique id:s called gametokens are generated

for hosted games so that they are not mixed up.

3.3.1 Exposing Erlang functionality to the GDL VM

20

0O Utk WN =

CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE

Algorithm 3.1 An example of how Erlang functionality is exposed to a Javascript GDL

% @doc Exposes some GGS functions to JavaScript
expose (GameVM, Table) ->
Global = erlv8_vm:global(GameVM)

Global:set_value("GGS",

).

{

]
{

]
{

e

{

e

e

%

s>

erlv8_object :new ([

Command , Args])->

Args})

[Command, Args])->
Args})

[Time, Function])->

Functionl])

"localStorage", erlv8_object:new ([

{"setItem", fun(#erlv8_fun_invocation{}, [Key, Vall)->
ggs_db:setItem(Table, local_storage, Key, Val)

end},

{"getItem", fun(#erlv8_fun_invocation{}, [Keyl)->
ggs_db:getItem(Table, local_storage, Key)

end}

% more functions

)},
"world", erlv8_object:new ([

{"setItem", fun(#erlv8_fun_invocation{}, [Key, Vall)->
ggs_db:setItem(Table, world, Key, Val),
ggs_table:send_command_to_all(

Table, {"world_set", Key ++ "=" ++ Vall}
)

end},

{"getItem", fun(#erlv8_fun_invocation{}, [Keyl)->
ggs_db:getItem(Table, world, Key),

end}

% more functions

)},

"sendCommand", fun(#erlv8_fun_invocation{}, [Player,
ggs_table:send_command (Table, Player, {Command,

nd}:

"sendCommandToAll", fun(#erlv8_fun_invocationd{},
ggs_table:send_command_to_all(Table, {Command,

nd}

{"setTimeout", fund(#erlv8_fun_invocation{},
timer:apply_after (Time, ?MODULE, call_js, [GameVM,

nd}

more functions

21

3 CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE

3.4 The modular structure of the GGS prototype

The separation of concerns, and principle of single responsibility E| are widely respected as good
practices in the world of software engineering and development. By dividing the GGS up into
modules each part of the GGS can be modified without damaging the rest of the system.

The responsibility and concern of each module comes from the responsibility and concern of
the real-world entity the model represents. The modelling of the GGS after a real world system
was discussed in chapter [2 on page 6

In the text below the word module refers to the actual code of the discussed feature, while the
word process is used when referring to a running instance of the code. Those familiar to object

oriented programming may be helped by thinking in the lines of classes and objects.

3.4.1 The dispatcher module

The dispatcher module is the first module to have contact with a player. When a player connects
to the GGS, it is first greeted by the dispatcher module, which sets up an accepting socket for each
player. The dispatcher is the module which handles the interfacing to the operating system when
working with sockets. Operating system limits concering the number of open files, or number of
open sockets are handled here. The operating system limits can impose problems on the GGS, this
is discussed more in detail in chapter

Should the dispatcher module fail to function, no new connections to the GGS can be made.
In the event of a crash in the dispatcher module, a supervisor process immediately restarts the
dispatcher. There exists a window of time between the crashing of the dispatcher and the restarting
of the dispatcher, this window is very short, and only during this window is the GGS unable to
process new connection requests. Due to the modular structure of the GGS, the rest of the system
is not harmed by the dispatcher process not functioning. The process does not contain a state,
therefore a simple restart of the process is sufficient in restoring the GGS to a pristine state after
a dispatcher crash.

Returning to scenario of the chess club, the dispatcher module is the doorman of the club.
When a player enters the chess club, the player is greeted by the doorman, letting the player in to
the club. The actual letting in to the club is in the GGS represented by the creation of a player
process discussed in The newly created player process is handed, and granted rights to, the

socket of the newly connected player.

3.4.2 The player module

The player module is responsible for representing a player in the system. Each connected
player has its own player process. The player process has access to the connection of the player
it represents, and can communicate with this player. In order to communicate with a player, the

data to and from the player object must pass through a protocol parser module, discussed in [3.4:3|

[on the next pagel Raw communication, witout passing the data through a protocol parser is in

theory possible, but is not useful.

In the creation of a player process, the coordinator process, discussed in [3.4.4 on page 24] is

notified by the newly connected process.

3More information on the SRP is available at: http://www.objectmentor.com/resources/articles/srp.pdf

22

http://www.objectmentor.com/resources/articles/srp.pdf

3 CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE

In the event of a crash in a player process, several things happen.

1. The player process, which is the only process with a reference to the socket leading to
the remote client software, passes this reference of the socket to the coordinator process

temporarily.
2. The player process exits.

3. The coordinator spawns a new player process, with the same socket reference as the old

player process had.

4. The player process resumes operation, immediately starting a new protocol parser process,

and begind receiving and sending network messaged again.

The window of time between the crash of the player process and the starting of a new player
process is, as with the dispatcher, very short. Since the connection changes owners for a short
period of time, but is never dropped, the implications of a crash are only noticed, at worst, as
choppy gameplay for the client. Note however that this crash recovery scheme is not implemented
in the GGS prototype.

Moving back to the real world example, the player process represent an actual person in the
chess club. When a person sits down at a table in the chess club, the person does so by requesting
a seat from some coordinating person, and is then seated by the same coordinator. Once seated,
the player may make moves on the table he or she is seated by, this corresponds clearly to how the

GGS is structured, as can be seen in the following sections.

3.4.3 The protocol parser module

The protocol parser is an easily interchangable module in the GGS, handling the client-to-
server, and server-to-client protocol parsing. In the GGS prototype, there is only one protocol
supported, namely the GGS Protocol. The role of the protocol parser is to translate the meaning
of packets sent using the prototocol in use to internal messages of the GGS system. The GGS
protocol, discussed below is used as a sample protocol in order to explain how protocol parsers can
be built for the GGS.

The structure of the GGS Protocol

The GGS protocol is modelled after the HTTP protocol. The main reason for this is the
familiarity many developers already have with HTTP due to its presence in internet software.
Each GGS protocol packet contains a headers section. The headers section is followed by a data
section. In the headers section, parameters concerning the packet is placed. In the data section,
the actual data payload of the packet is placed.

There is no requirement of any specific order of the parameters in the headers section, however
the data section must always follow directly after the headers section.

In the example below, line 1 contains a Game-Command parameter. This parameter is used
to determine which game-specific command the client is trying to perform. The handling of this
parameter is specific to each game, and can be anything.

Line 2 specifies a game token. This is a UUID which is generated for each client upon au-

thentication with the GGS. The GGS uses this token in case a client is disconnected and the new

23

DU W N

3 CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE

Algorithm 3.2 A sample packet sent from a client to the GGS during a chat session

Game -Command: chat
Token: e30174d4-185e-493b-a21a-832e2d9d7ala
Content -Type: text
Content -Length: 18

Hello world, guys!

connection created when the client reconnects must be re-paired with the player object inside the
GGS. The UUID is also used as a unique ID within GDL VMs.

Line 3 specifies the content type of the payload of this particular packet. This parameter allows
the GGS to invoke special parsers, should the data be encoded or encrypted. When encryption is
employed, only the payload is encrypted, not the header section. This is a scheme which does not
allow for strong encryption, but is deemed feasible for gaming purposes.

Line 4 specifies the content length of the payload following immediately after the headers
section.

The parser of the GGS protocol implemented in the GGS prototype is designed as a finite state
machine using the gen_fsm behaviour. When a full message has been parsed by the parser, the
message is converted into the internal structure of the GGS messages, and sent in to the system

from the protocol paser using message passing.

3.4.4 The coordinator module

The coordinator module is responsible for keeping track of all players, their seats and tables.
Players register with the coordinator process when first connecting to the server, and the coordi-
nator places each player by their respective table.

The coordinator keeps mappings between each player and table, therefore it is used to perform
lookups on tables and players to find out which are connected. The connectivity of players and
tables is important when sending messages to all participants in a game. A lookup in the coordi-
nator process is performed prior to notifying all players in a game to ensure the message reaches
all players. The lookup can be performed either using internal identification codes or using the
UUID associated with each client and table.

The coordinator process contains important state, therefore a backup process is kept at allt
times. All good data processed by the coordinator is stored for safekeeping in the backup process
as well. Data which is potentisally harmful is not stored in the backup process.

Upon a crash, the coordinator process recovers the prior good state from the backup process
and continues where it left off. A supervisor process monitors the coordinator process and restarts
the process when it malfunctions. There is a window of time between the crash of the coordinator
and the restarting of the coordinator, during this time, players can not be seated by new tables,
and can not disconnect from the server. This window of time is very small, and the unavailability
of the coordinator process should not be noticed by more than a short time lag for the clients.

Moving back to the example of the chess club, the coordinator process can be seen as a judge,
monitoring all moves of the players. At the same time as acting as a judge, the coordinator process

is also a host in the chess club, seating players by their tables and offering services to the players.

24

3 CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE

3.4.5 The table module

The table module is mostly a hub used for communication. New table processes are created by
the coordinator on demand. The table module does not contain any business logic, however each
process contains information concerning which players are seated by that particular table.

The information about which players are seated by each table is used when notifying all players
by a table of an action. Consider a game of chess, each player notifies the table of its actions,
the table then notifies the rest of the participants of these actions after having had the ac tions
processed by the game VM, where an action could be moving a playing piece.

Each table is associated with a game VM. The actions sent to a table are processed by the
game VM, this is where the game logic is implemented.

After a crash in a table process, the entire table must be rebuilt and the players must be
re-associated with the table. Data concerning players is kept in the coordinator process, and is
restored from there. Data kept in the actual game is not automatically corrupted by the crash in
a table, however the table must be re-associated with the game VM is was associated with prior
to the crash of the table. The table process maps well into the setting of the real-world chess club
scenario previously discussed. A table works in the same way in a real world setting as in the GGS

setting.
3.4.6 The game virtual machine module

This module holds the game logic of a game and is responsible for the VM associated with each
game.

The game VM contains the state of the VM and a table token associated with a running game.
GameVM is started by the table module. The table module hands over a token to the game VM
during initialization. During initialization a new VM instance and various objects associated to
the VM instance will be created. Callbacks to Erlang are registered into the VM and then the
source code of a game is loaded into the VM and the game is ready for startup. The only means
for a game to communicate with the VM is through usage of a provided interface.

The VM itself makes it possible for the game developer to program in the prograimming lan-
guage covered by the VM. In future releases, more game VM:s will be added to support more
programming languages. Because the game VM keeps track of the correct table, the game devel-
oper doesn’t need to take this into consideration when programming a game. If a method within
the game sends data to a player, it will be delivered to the player in the correct running game.
The same game token is used to store the game state in the database. Therefore, no game states
will be mixed up either.

This module does not affect game runtime but evaluates a new game state and handles com-

munication between the game and the players.

3.4.7 The database module

Game data from all games on the GGS are stored in the database backend of the database
module.
In the GGS prototype the database module is using a database management system called

Mnesia. Mnesia ships with the standard Erlang distribution and is a key-value store type database.

25

3 CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE

Mnesia is designed to handle the stress of telecoms systems, and has some features specifically
tailored for telecoms which are not commonly found in other databases. Key features of the

Mnesia database are:
e Fast key/value lookups
e Distribution of the database system

e Fault tolerance

Mattsson et al.| [199§]

The features of Mnesia originally intended for telecoms prove very useful for the purposes of the
GGS as well. The fault tolerance and speed of Mnesia are very valueable tools, the fast key/value
lookups permit many lookups per second to the database.

Game data will not be lost when a game is stopped or has gone down for unknown reasons.
This makes it possible to continue a game just before the failure without having to start the game
from the beginning.

The GGS stores the game state in the distributed Mnesia database, from which the state can
be restored in the event of a crash.

Each game is uniquely identified by a table token and the data of each game is stored within
two different namespaces. The namespaces are named World and Localstorage. The World is used
contain all game data related to the game state. This sort of game data may change during the
runtime of the game. The Localstorage should contain data independent of the game state. Game
resources, constants and globals are all examples of data that could reside within the Localstorage.
To store a value within the database, not only is the table token and the name of the namespace
required, but a unique key so that the value can be successfully retrieved or modified later. The
key is fully decidable by the game developer.

The interface of the database module is an implementation of the upcoming W3C Web Storage
specification. Web Storage is intended for use in web browsers, providing a persistant storage
on the local machine for web applications. The storage can be used to communicate in between
browser windows (which is difficult when using cookies), and to store larger chunks of data [Hickson
[2011]. Usage of the web storage standard in the GGS provides a well documented interface to the
database backend.

3.5 Techniques for ensuring reliability

One of the main goals of the project is to achieve high reliability. The term “reliable system” is
defined by the IEEE as a system with “the ability of a system or component to perform its required
functions under stated conditions for a specified period of time” |[Electrical and | [ieee]. There are

some tools for creating reliable applications built in to Erlang.

e Links between processes. When a process spawns a new child process, and the child process

later exits, the parent process is notified of the exit.

e Transparent distribution over a network of processors. When several nodes participate in a
network, it does not matter on which of these machines a process is run. Communication

between processes does not depend on the node in which each process is run.

26

3 CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE

e Hot code replacements. Two versions of the same module can reside in the memory of Erlang
at any time. This means that a simple swap between these versions can take place very

quickly, and without stopping the machine.

These three features are some of the basic building blocks for more sophisticated reliability systems
in Erlang. Many times it is not necessary to use these features directly, but rather through the

design patterns described below.

3.5.1 Supervisor structure

By linking processes together and notifying parents when children exit, supervisors are created.
A supervisor is a common approach in ensuring that an application functions in the way it was
intended |Savor and Seviora, [1997]. When a process misbehaves, the supervisor takes some action
to restore the process to a functional state.

There are several approaches to supervisor design in general (when not just considering how
they work in Erlang). One common approach is to have the supervisor look in to the state of the
process(es) it supervises, and let the supervisor make decisions based on this state. The supervisor
has a specification of how the process it supervises should function, and this is how it makes
decisions.

In Erlang, we have a simple version of supervisors. We do not inspect the state of the processes
being supervised. We do have a specification of how the supervised processes should behave, but on
a higher level. The specification describes things such as how many times in a given time interval
a child process may crash, which processes need restarting when crashes occur, and so forth.

When the linking of processes in order to monitor exit behaviour is coupled with the transparent
distribution of Erlang, a very powerful supervision system is created. For instance, we can restart
a failing process on a different, new node, with minimal impact on the system as a whole.

In the GGS, we have separated the system in to two large supervised parts. We try to restart
a crashing child separately, if this fails too manyﬂ times, we restart the nearest supervisor of this
child. This ensures separation of the subsystems so that a crash is as isolated as possible.

The graphic above shows our two subsystems, the coordinator subsystem and the dispatcher
subsystem. Since these two systems perform very different tasks they have been separated. Each
subsystem has one worker process, the coordinator or the dispatcher. The worker process keeps a
state which should not be lost upon a crash.

We have chosen to let faulty processes crash very easily when they receive bad data, or some-
thing unexpected happens. The alternative to crashing would have been to try and fix this faulty
data, or to foresee the unexpected events. We chose not to do this because it is so simple to monitor
and restart processes, and so difficult to try and mend broken states. This approach is something
widely deployed in the Erlang world, and developers are often encouraged to “Let it crash”.

To prevent any data loss, the good state of the worker processes is stored in their respective
backup processes. When a worker process (re)starts, it asks the backup process for any previous

state, if there is any that state is loaded in to the worker and it proceeds where it left off. If on the

4Exactly how many “too many” is depends on a setting in the supervisor, ten crashes per second is a reasonable
upper limit.

27

3 CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE

Figure 3.2: The supervisor structure of GGS

other hand no state is available, a special message is delivered instead, making the worker create

a new state, this is what happens when the workers are first created.
3.5.2 Distribution
3.5.3 Hot code replacement

3.6 Implementation

User interface

3.7 Example of a GGS server application in Javascript

Below is a concrete example of a simple chat server application written using the GGS. The
language chosen for this chat server is JavaScript. The GGS processes all incoming data through
a protocol parser, which interprets the data and parses it into an internal format for the GGS.

When the GGS receives a command from a client, it is passed along to the game VM in a
function called playerCommand. The playerCommand function is responsible for accepting the
command into the VM. Typically the playerCommand function contains conditional constructs
which decide the next action to take. In [3.3]an example of the playerCommand function can be
seen.

In [3:3] the playerCommand function accepts two different commands. The first command is
a command which allows chat clients connected to the chat server to change nicknames, which
are used when chatting. In order to change nickname, a client must send “/nick” immediately
followed by a nickname. When a message arrives to the GGS which has the form corresponding
to the nickname change, the playerCommand function is called with the parameters player id,
command, and args filled in appropriately.

The playerCommand function is responsible for calling the helper functions responsibly for

28

0O~ O Ui W

3 CHAPTER 3. IMPLEMENTATION OF A PROTOTYPE

Algorithm 3.3 A concrete example of a simple chat server written in Javascript, running on the
GGS

function playerCommand(player_id, command, args) {

if (command == "/nick") {
changeNick (player_id, args);
} else if (command == "message") {

message (player_id, args);
}
}
function changeNick(player_id, nick) {
var old_nick = GGS.localStorage.getItem("nick_" + player_id);
GGS.localStorage.setItem("nick_" + player_id, nick);
if (lold_nick) {
GGS.sendCommandToAll ("notice", nick + " joined");
} else {
GGS.sendCommandToAll ("notice", old_nick + " is now called " + nick);
}
}
function message(player_id, message) {
var nick = GGS.localStorage.getItem("nick_" + player_id);
GGS.sendCommandToAll (’message’, nick + "> " + message);

carrying out the actions of each message received. changeNick is a function which is called when the
“/nick” message is received. The changeNick function uses a feature of the GGS called localStorage
(see section , which is an interface to the database backend contained in the database module
(see . The database can be used as any key-value store, however the syntax for insertions
and fetch operations is tighty integrated in the GDL of the GGS.

Access to the localStorage is provided through the GGS object, which also can be used to
communicate with the rest of the system from the GDL. Implementation specifics of the GGS
object are provided in [3.3]

29

4 Problems of implementation

This chapter contains specific problems encountered when implementing the GGS prototype.
Some of the problems described have solutions attached, however some problems were not solved,
therefore only ideas for slutions have been attached.

The integration of JavaScript as a GDL in the GGS prototype was particularily difficult, and is
handled in this section. Unique identification is also handled, as is the design of the GGS protocol.

4.1 JavaScript engine

The GGS prototype uses a vistual machine to sandbox each game. JavaScript was chosen for
the prototype due to its commonality in web applications and the flexibility of the language. Any
language with the proper bindings to Erlang could have been used in theory.

There are two main JavaScript virtual machines, or engines available at the time of the writing
of this thesis. There is a group of machines developed by Mozilla called TraceMonkey, JaegerMon-
key, SpiderMonkey and IonMonkey, and also there is Google V8. The group of Mozilla machines
are largely the same, and are referred to as the same machine for simplicity.

For the Mozilla machines, there exists an Erlang binding called erlang js, and for the V8
machine a binding called erlv8 exists.

4.1.1 erlang_js

Erlang_js provides direct communication with the JavaScript VM. Which is exactly what is
desired, however also required is thee possibility to communicate from erlang_js to Erlang. The
ability to communicate from JavaScript to Erlang functionality is not yet implemented in erlang_ js,
due to lack of time on the behalf of the erlang js developers.

There were two possible solutions to the problem of the JavaScript to Erlang communication
path missing, the path could be implemented by the GGS project, or a switch from erlang js for
some other JavaScript engine could be made.

Attempts at creating the communication path from JavaScript to Erlang were initially made,
however the communiucation path never became stable enough for usage in the GGS and the

erlang_ js software was abandoned.

4.1.2 erlv8

erlv8 is powered by the V8 engine developed by Google rather than the engines developed by
Mozilla. The ability to communicate with Erlang from JavaScript using callbacks is available in
the erlv8 bindings, therefore this feature does not have to be added to the bindings in order to be
used in the GGS.

Initial releases of the erlv8 bindings had stability issues, these were however solved by the erlv8
developers during the usage of erlv8 in the GGS. erlv8 is the JavaScript engine powering JavaScript
as a GDL in the GGS.

30

4 CHAPTER 4. PROBLEMS OF IMPLEMENTATION

4.1.3 UUID

Erlang identifies processes uniquely throughout the entire Erlang network using process IDs
(PID). When we wish to refer to erlang processes from outside our erlang system, for example in a
virtual machine for a different language, possibly on a different machine, these PID:s are no longer
useful.

This problem is not new, and a common solution is to use a Universally Unique Identifier, a
UUID. These identifiers are generated both using randomization and using time. A reasonably
large number of UUID:s can be generated before a collision should occur. There are standard tools
in many UNIX systems to generate UUID:s, we chose to use the uuidgen command, which employs

an equidistributed combined Tausworthe generator.

4.1.4 Protocol design

4.2 Design choices

When designing concurrent applications, it is useful to picture them as real world scenarios,
and to model each actor as a real world process. A real world process is a process which performs
some action in the real world, such as a mailbox receiving a letter, a door being opened, a person
translating a text, a soccer player kicking the ball, just to name a few examples. Since we focus
on games in this project, it is suitable to model our system as a place where games take place. We
imagined a chess club.

The clients pictured as green circles can be thought of as the physical chess players.

When a player wants to enter the our particular chess club, he must first be let in by the
doorman, called the Dispatcher in the GGS.

He then gets a name badge, and thus becomes a Player process in the system. He is also guided
in to the lobby by the Coordinator, which has the role of the host of the chess club.

When players wish to play against each other, they talk to the Coordinator who pairs them
up, and places them at a table. Once they have sat down at the table, they no longer need the
assistance of the Coordinator, all further communication takes place via the table. This can be
thought of as the actual chess game commencing.

All the moves made in the game are recorded by the table, such that the table can restore the
game in case something would happen, such as the table tipping over, which would represent the
table process crashing.

Once a player wishes to leave a game, or the entire facility, he should contact the Coordinator,
who revokes his name badge and the Dispatcher will let the player out.

With the information kept in the tables and the Coordinator combined, we can rebuild the
entire state of the server at a different location. This can be thought of the chess club catching
fire, and the Coordinator rounding up all the tables, running to a new location and building the

club up in the exact state it was prior to the fire.

4.3 Understanding OTP
4.4 Usability

31

5 Results and discussion

5.1 Software development methodology

The project has not followed any specific software development methodology. All work has
been based on a predefined schedule and the specifications are made by team members rather than
an outside customer or stakeholder. The process can be described as a plan-driven development
method going from brainstorming to design, then implementation and finally testing. Yet there

has been cycles in the process in form of redesign and code refactoring.

5.2 Statistics

Important things to note are that the number of clients is not a good way of measuring the
performance of the server because the server is possible to have a large number of clients on the
server but it can not handle all the information. Instead the performance of the server should be
measured in the number of messages it can handle per second.

We were able to reach 6000 messages per second on the server, which corresponds to around
350 clients. However soon after this mnesia printed some warnings and the clients started to lag.
With this in mind one thing to investigate is if mnesia is the bottleneck in the system. Current
game servers do not use databases to save their state and maybe we can see the reason here. Other

possible bottlenecks may be the protocol, but this seems less likely than mnesia.

32

5 CHAPTER 5. RESULTS AND DISCUSSION

6000 - . .

Client rhessag'ges
Server messages
5000 1

4000 | .
3000 r .

2000 r _

Messages / second

1000 .

A N n\{f N AN]-\\N/VLJ; N, /NU\NW[« V\& P)J,LJ\/“\J
_ 1 1 1 1 1 1

00—
0 50 100 150 200 250 300 350 400

Number of clients

Figure 5.1

5.3 Future improvements

The specification of the GGS prototype is huge and like many other software projects relying
on outside technologies, in time it would require a lot of maintanance. Therefore there are a lot of
areas in which the GGS could be improved such as performance, compatibility, ease of setup and

usage.
5.3.1 Performance

Protocols

Because of TCP being a connection oriented protocol, it isn’t suited for all types of game data
transfers. Each transmission will consume more network bandwith than connectionless protocols
like UDP and cause uneccessary load on the processor. Therefore support for UDP would mean that
more games could be run simultaneously on the GGS. Another advantage of UDP is latency being
reduced. Without having to setup a connection for each group packets of data being sent, they will
be sent instantly and therefore arrive earlier. Latency is of highest importance in realtime games
as it improves realism and fairness in gameplay and many game developers requires the freedom to
take care of safety issues as packet losses themselves. This concludes that UDP would be a benefit

for the GGS, game developers and game players alike.
Database

Currently Mnesia is used for game data storage. During stress tests, Mnesia has turned out to
be the bottleneck due to data losses when too many games are played on the GGS simultaneously.

This could be prevented by replacing Mnesia with another database management system or use

33

5 CHAPTER 5. RESULTS AND DISCUSSION

Mnesia in combination with the ETS module of erlang. ETS provides fast access to the RAM and

thus Mnesia could be used less frequently.

5.3.2 Compatibility

GGS relies on modern technologies. This includes the virtual machines(VM) that the GGS
uses for communication between Erlang and the GDL:s. These specific VM:s are crucial for game
developers to be able to write games in other languages than Erlang. Therefore it would be best
for the GGS to have as many of these VM:s implemented as possible. The VM:s taken into
consideration so far have been unstable or incomplete and it is possible to search for more VM:s,

testing them and intergrate them into the GGS prototype.
5.3.3 Setup

The GGS prototype installation procedure requires different configuring and building steps
and thus it isn’t in an acceptable release state. An executable installation file for each supported

platform would be optimal.
5.3.4 Usage
Programming languages

The GGS doesn’t support many programming languages. For a programming language to be
compatible with the GGS, not only does it require a VM for that specific language, but the VM
must have the ability to communicate to Erlang. More research is needed to find VM:s with this

built in functionality.
Documentation

To start the GGS isn’t self explanatory. This together with overall usage of GGS should be
documented. The interface for usage of game developers is also in need of documentation. Features
and requirements with respect to the GGS would assist users to know what they need in order to
use the GGS and how they would benefit of it.

34

Conclusion

35

Glossary

NetHack An early computer game developed by the NetHack team, arguably the oldest computer

game still in development
Pacman An early graphical computer game developed by Namco
UUID Universally Unique Identifier
UUID Universally Unique Identifier
Zork A textual computer game developed by students at MIT
NET Software platform
ActionScript Programming language
Amazon EC2 A cloud computation service
Application A way of packaging Erlang software in a uniform way
AXD301 Telephone switch developed by Ericsson
Behaviour A design pattern in OTP
C++ Programming language
COBOL Programming language

Context switch The act of switching from one context, commonly a process, to another. Used

by operating systems to achieve multi tasking
CouchDB Database server
Counter-Strike A multiplayer first person shooter game, popular in E-Sports.
Doom A first person shooter series developed by ID software. The series consists of three games.
Downtime The amount of time a system is unavailable and does not function

Erlang A concurrent programming language, often used for telecom applications. The main
language of the GGS

ETS Erlang Term Storage

First-person shooter A game in which centers around gun combat from the first person per-

spective.
Framework A supporting structure, the GGS is a framework for developing network games
GDL Game Development Language, the language used to program games in the GGS

GGS Generic Game Server, a software for reliably hosting network games. The subject of this

thesis.
GitHub.com Social coding website

Hardware failiure A failiure in hardware (hard drive, memory, processor, etc) which causes a

system to stop functioning

36

6 CHAPTER 6. CONCLUSION

HTTP Hyper Text Transport Protocol, a network protocol commonly used to deliver web pages
IEEE Institute of Electrical and Electronics Engineers, read I-triple-E

JavaScript A programming language originally developed by Netscape, common in web program-

ming
Java Programming language
Latency A measure of delay, often measured in milliseconds
Lua Programming language
LWP Light Weight Process
MAC Address Media Access Control address, used to identify network cards

MMORPG Massively multiplayer online role playing game. An online game with several thou-

sand participants.
Mnesia Database server used in the GGS
Module A part of a larger system

Mutex A construct for achieving mutial exclusion, used to avoid simultaneous access to shared

resources in computer systems

Network split Separation of two networks, occurs when two networks can not communicate,

commonly because of a hardware or software failiure
Object Oriented Programming A programming paradigm focusing on objects
OTP Open Telecom Platform, a software suite for Erlang
Quake A first person shooter series developed by ID software. The series consists of four games.

Reliability The ability of a system or component to perform its required functions under stated

conditions for a specified period of time
Riak Database server
Sandbox A protected environment in which computer software can be run safely
SHA-1 Cryptigraphic hash function, designed by the National Security Agency (NSA)

Software failiure A failiure in software (the GGS, the operating system, etc) which causes a

system to stop functioning
SpiderMonkey JavaScript engine developed by Mozilla
SQL Structured Query Language, a computer language common in querying certain databases

SRP Single Responsibility Principle

37

6 CHAPTER 6. CONCLUSION

Supervisor A process monitoring and hadning crashes in other processes
TCP Transmission Control Protocol, a streaming network protocol

The nine nines A common goal for availability in the telecom business. A system with nine
nines of availability is available 99.999999999

UDP User Datagram Protocol, a connectionless networking protocol

Uptime The amount of time a system is available and functions

V8 JavaScript engine developed by Google

VM Virtual Machine

WebStorage A new standard for letting websites store data on visitors’ computers

World of Warcraft A MMORPG game developed by Blizzard. The world’s most popular MMORPG

by subscriber count.

38

Bibliography

Joe Armstrong. Making reliable distributed systems in the presence of software errors. PhD thesis,
KTH, Microelectronics and Information Technology, IMIT, 2003.

Joe Armstrong. Erlang. Commun. ACM, 53:68-75, September 2010. ISSN 0001-0782.
doi: http://doi.acm.org.proxy.lib.chalmers.se/10.1145/1810891.1810910. URL http://doi.
acm.org.proxy.lib.chalmers.se/10.1145/1810891.1810910.

Joe Armstrong. If erlang is the answer, then what is the question?, 2011.

Entertainment Software Association. Industry facts, April 2011. URL http://www.theesa.com/

facts/index.asp.

André B. Bondi. Characteristics of scalability and their impact on performance. In Proceedings of
the 2nd international workshop on Software and performance, WOSP ’00, pages 195-203, New
York, NY, USA, 2000. ACM. ISBN 1-58113-195-X. doi: http://doi.acm.org/10.1145/350391.
350432. URL http://doi.acm.org/10.1145/350391.350432.

Institute O. Electrical and Electronics E. (ieee). IEEE 90: IEEE Standard Glossary of Software
Engineering Terminology. 1990.

Johannes Farber. Network game traffic modelling. In Proceedings of the 1st workshop on Network
and system support for games, NetGames ’02, pages 53-57, New York, NY, USA, 2002. ACM.
ISBN 1-58113-493-2. doi: http://doi.acm.org/10.1145/566500.566508. URL http://doi.acnm.
org/10.1145/566500.566508.

Felix C. Gértner. Fundamentals of fault-tolerant distributed computing in asynchronous environ-
ments. ACM Comput. Surv., 31:1-26, March 1999. ISSN 0360-0300. doi: http://doi.acm.org/
10.1145/311531.311532. URL http://doi.acm.org/10.1145/311531.311532.

Tan Hickson. Web storage — editor’s draft 27 april 2011, May 2011. URL http://dev.w3.org/
html5/webstorage/.

P J Leach and R Salz. Uuids and guids. internet draft draft-leach-uuids-guids-01.txt. internet

engineering task force, 1998.

Viktor Lidholt. Design and testing of a generic server for multiplayer gaming. Master’s thesis,
Uppsala, Sweden, 2002.

Haakan Mattsson, Hans Nilsson, and Claes Wikstrom. Mnesia - a distributed robust dbms
for telecommunications applications. In PADL ’99: Proceedings of the First International
Workshop on Practical Aspects of Declarative Languages, pages 152-163, London, UK, 1998.
Springer-Verlag. ISBN 3-540-65527-1. URL http://portal.acm.org/citation.cfm?id=
645769.667766.

Marshall Kirk McKusick and George V. Neville-Neil. The Design and Implementation of the
FreeBSD Operating System. Pearson Education, 2004. ISBN 0201702452.

LLC Nash Information Services. U.s movie market summary 1995 to 2011, April 2011. URL
http://www.the-numbers.com/market/.

NetHack. Nethack information, April 2011. URL http://www.nethack.org/common/info.htmll

39

http://doi.acm.org.proxy.lib.chalmers.se/10.1145/1810891.1810910
http://doi.acm.org.proxy.lib.chalmers.se/10.1145/1810891.1810910
http://www.theesa.com/facts/index.asp
http://www.theesa.com/facts/index.asp
http://doi.acm.org/10.1145/350391.350432
http://doi.acm.org/10.1145/566500.566508
http://doi.acm.org/10.1145/566500.566508
http://doi.acm.org/10.1145/311531.311532
http://dev.w3.org/html5/webstorage/
http://dev.w3.org/html5/webstorage/
http://portal.acm.org/citation.cfm?id=645769.667766
http://portal.acm.org/citation.cfm?id=645769.667766
http://www.the-numbers.com/market/
http://www.nethack.org/common/info.html

6 BIBLIOGRAPHY

T. Savor and R. E. Seviora. Hierarchical supervisors for automatic detection of software failures. In
Proceedings of the Eighth International Symposium on Software Reliability Engineering, ISSRE
97, pages 48—, Washington, DC, USA, 1997. IEEE Computer Society. ISBN 0-8186-8120-9.
URL http://portal.acm.org/citation.cfm?id=851010.856089.

40

http://portal.acm.org/citation.cfm?id=851010.856089

	Introduction
	Background
	Purpose
	Challenges in developing the prototype
	Limitations of the prototype
	Method

	Theory behind the GGS
	Design of the GGS system
	Performance
	Performance measurements

	Choice of network protocol
	HTTP
	UDP
	TCP

	Generic
	Fault Tolerance
	Availability
	Scalability
	Load balancing
	UUID` 12`12`$12`&12`#12`1̂2`_12`%12`1̃2UUIDUniversally Unique Identifier

	Security
	Encryption

	Game Development Language in a Virtual Machine
	JavaScript
	Other languages

	Testing

	Implementation of a prototype
	Overview of the prototype
	The usage of Erlang in the GGS
	Short introduction to the Erlang syntax

	Communication with external systems and applications
	Exposing Erlang functionality to the GDL VM

	The modular structure of the GGS prototype
	The dispatcher module
	The player module
	The protocol parser module
	The coordinator module
	The table module
	The game virtual machine module
	The database module

	Techniques for ensuring reliability
	Supervisor structure
	Distribution
	Hot code replacement

	Implementation
	Example of a GGS server application in Javascript

	Problems of implementation
	JavaScript engine
	erlang_js
	erlv8
	UUID
	Protocol design

	Design choices
	Understanding OTP
	Usability

	Results and discussion
	Software development methodology
	Statistics
	Future improvements
	Performance
	Compatibility
	Setup

	Conclusion
	Glossary

