From edbbf79bc10ac733977595bfd16f0ed7f9a6001e Mon Sep 17 00:00:00 2001 From: Jeena Paradies Date: Tue, 15 Oct 2013 13:07:06 -0700 Subject: [PATCH] Create gh-pages branch via GitHub --- images/bg_hr.png | Bin 0 -> 943 bytes images/blacktocat.png | Bin 0 -> 1428 bytes images/icon_download.png | Bin 0 -> 1162 bytes images/sprite_download.png | Bin 0 -> 16799 bytes index.html | 279 +++++++++++++++++++++++ javascripts/main.js | 1 + params.json | 1 + stylesheets/pygment_trac.css | 70 ++++++ stylesheets/stylesheet.css | 427 +++++++++++++++++++++++++++++++++++ 9 files changed, 778 insertions(+) create mode 100644 images/bg_hr.png create mode 100644 images/blacktocat.png create mode 100644 images/icon_download.png create mode 100644 images/sprite_download.png create mode 100644 index.html create mode 100644 javascripts/main.js create mode 100644 params.json create mode 100644 stylesheets/pygment_trac.css create mode 100644 stylesheets/stylesheet.css diff --git a/images/bg_hr.png b/images/bg_hr.png new file mode 100644 index 0000000000000000000000000000000000000000..7973bd69888c7e10ccad1111d555ceabb7cd99b6 GIT binary patch literal 943 zcmaJ=O^ee&7!FiK7FWCot{@Ck@nrMW&tx0B-6VAbrk1u~FTzffX&bu9#AIsIdef8t z!QZfdz=K}>3m(LO;6X3qN}Y6@>cJYA%)G<%Jn!ec>9im1@7>wsIBwrMF}iHO!q%;8 zSJ@xEd~(FL18NRvkBsOXMVM>4WQc*~qcQGc17IjxRnj!O_^B1gan0x#EWT48PK->5B2>mI;LIx zC*FSw$Nfc!g)WZCEOJ=mM)}lLsOk|$ltg_(&ax_YCWMlBLPDVT%D_gB7o_$YZ`-OB z#1sV%whRq21>W;qwN$N?OUGtQQe;JvOsQrna;+v+j8dth=*?orHHb6waX>S!yXCgT zo!oR3{E&GzaOAzfZYv@_Sf{LdyJInS>TS60&R9%yCs$y>2x(*gYIJtRrYAja$Ceq} z!N&oc_K1!3-Ft`U>`CM;quEbB4KG%!MovB*9_3!QzFhqHwrbwK|Doo-y>auDJNSP6 T=d)j*_4El@X4^PFK7I8YBT*xD literal 0 HcmV?d00001 diff --git a/images/blacktocat.png b/images/blacktocat.png new file mode 100644 index 0000000000000000000000000000000000000000..6e264fe57a2e35a2855405ac7d4102c3f6ddcdae GIT binary patch literal 1428 zcmeAS@N?(olHy`uVBq!ia0vp^av;pX1|+Qw)-3{3k|nMYCBgY=CFO}lsSJ)O`AMk? zp1FzXsX?iUDV2pMQ*9U+n3Xa^B1$5BeXNr6bM+EIYV;~{3xK*A7;Nk-3KEmEQ%e+* zQqwc@Y?a>c-mj#PnPRIHZt82`Ti~3Uk?B!Ylp0*+7m{3+ootz+WN)WnQ(*-(AUCxn zQK2F?C$HG5!d3}vt`(3C64qBz04piUwpD^SD#ABF!8yMuRl!uxKsVXI%s|1+P|wiV z#N6CmN5ROz&_Lh7NZ-&%*U;R`*vQJjKmiJrfVLH-q*(>IxIyg#@@$ndN=gc>^!3Zj z%k|2Q_413-^$jg8EkR}&8R-I5=oVMzl_XZ^<`pZ$OmImpPAEg{v+u2}(t{7puX=A(aKG z`a!A1`K3k4z=%sz23b{L-^Aq1JP;qO z-q+X4Gq1QLF)umQ)5TT^Xo6m5W{Q=eg`=5?o13Glvx}*rp{t>#shg3DvyriZv5}jZ ztD`wguSMv>2~2MaLa!4}y`ZF!TL84#CABECEH%ZgC_h&L>}9J=EN(GzcCm0X zaRr%YgxxI=y(w7S0@dq`Q?EYIG5Vm0MT%&c5HR(CnDAr^T6f1avxRvmvnsN+?-j}Z~1)Zr#rqzrt`edmo44*B<0=C4>mrxHF6$p zVws~UocMfeI`gB8pYMLYTzA87`NOI2w2B*JM5L`^AkN4AFQu&S+6ULTPjv;vzl4& z-eaK_F|D4~l3hzBSF~icNT@MID=v+_X`vpuvf=8+S(|^vlRdHe0<)v-^wiVR3w=TQ)uFA9F z>vmqc-mj#PnPRIHZt82`Ti~3Uk?B!Ylp0*+7m{3+ootz+WN)WnQ(*-(AUCxn zQK2F?C$HG5!d3}vt`(3C64qBz04piUwpD^SD#ABF!8yMuRl!uxKsVXI%s|1+P|wiV z#N6CmN5ROz&_Lh7NZ-&%*U;R`*vQJjKmiJrfVLH-q*(>IxIyg#@@$ndN=gc>^!3Zj z%k|2Q_413-^$jg8EkR}&8R-I5=oVMzl_XZ^<`pZ$OmImpPAEg{v+u2}(t{7puX=A(aKG z`a!A1`K3k4z=%sz23b{L-^Aq1JP;qO z-q+X4Gq1QLF)umQ)5TT^Xo6m5W{Q=$skw`#i#v$3O_v5UEZv#YC% zp@9obuSMv>2~2MaLa!N4y`ZF!TL84#CABECEH%ZgC_h&L>}9J=+-@<(X&zK> z3U0TU;MA)Rbc{YIVv!;mCIn19ASOK70y*%6pPC0u?M1+3t#h8?05D7Z^K@|xskoK& z=l_5E!ww8;ZH!Ed#V+%1n6Rkg{=V8A2QTsNE8^> zvHmCezoM^A29GnE>#ih4F*YzTGbm`! V-6~#faTQcLc)I$ztaD0e0svxP=aVwVK4enmt9g0IKZo#d%7nk4^w@~b(uifvD z``(=MFknn*JH!$I|dc`^>cnF`118Y;wG!- z_Q~1W&C?8M1t(?cY;HxR=xAnRrDFqjVB?XVPEmW7Xl zg^(qUggBL`m+-3rM=LioDlf+`P9R|~F`ECdEBt!??=}Yw)qjY%If&8xr&D?=>QvIs zKr1Rfc1|`6PJT`*elB({9$ot`v%N~NfxMmE%)Ho~K(zmD zLBu>zoJ}(rGZvvZq7h0XXh{f z9Yu9pXE$e%t+NZ2^d~+l6*CJvr+?S~A+Mq$tmp)CGjp=AQj`&+d9}c9XJ;wQ&CM;t zBP+;Tt70}MZ%2E#K>`3(=RTj4U-+kfyU+w*uuI2yk3)lau%kk05?ukdhi;`oX(Qd(Zie|+td0lF!B(ZgdEn&k}~O&w^8 z>?^KhaE^p%K#G;csY3icy5ewJ$krr-^7@+4EHpGa#pDKa+M{G(JcMAk2y@ zAD4bbfGckvCZKO$D4eZfeFQD1|6@RV6@1dY-!HZip7n9y6F|ybPIQY;UY&domoq^$ znnL$MBL=odWST@B_g;kDOd=z~0LQJ9!zQ&qM$$&IgTXny;Z0Zk5gd0m95{LV4p;Lg z8+Ex$iXYRl_%@~x>ANvXi<@~XA@B=8i|)%}?buwZ+!X?a3Y8yVnUE0Qeo6SMC8Aws z%oTAu9Q2kmVDg4^0;oI}|4=6MK~4_-4;-B-+44!cYW9I=iC^WT=PRN#<7uR2G;gX^m~zA)LhEquX)c?AGh2jr8?EN4OcXVV z;~SPr3a2dln~!dJXklj=nG><%dSc7eo7xW;2yhgKuf<^15ZR7 zUEEA3kE=8gb=FL$&gf{@0wF=_TtZ_KqgzL6nv?JpI3FKMS`Li6q^-nGqp!0~jK z&Hlv0L(YyC>gE8|dPLM;-oe__-3N@b41Zvsb@qTCV*MRwZe!@b(0!)+0&c{o0{S%1 zW01+)!2R+C-F1r-pJk9*5|M`f2tOqLoQ4Z)CPSKaQ67mtJB zf~Z+z98vUy`wi2tN08e*72TJeg@}!3N6n#{y$O;{GJyaQd8jpTz`TBE2V)#ocq31~ z!DHeRdw(Lais)#Qn#!mvBe^;hCsL}okh7kvm@s!By?Ue6nbAR#le#~q-&gU@yQ!Pi zv}<+lsMJe!7w*Fk(j+S<-1mdt#8d3U%X}W3q|sxS?#FO{$Wv`+`VYS@0I!j(gykt8 zjVk0ac&Y+o3M9%E3piX?>%J3K(71|O$W&KS^usI8M>t51StG2gAwVis9RKVT#W@=p zzJ=9< z;LTNs0;5@f?4#MJA-0s3Z3|8M^gxY*RS{C2Ich`|AIFCJ%5YKaz#L^PFm_E zo@OVpm!ESz&S%FC3((q#q%aX0S)Gb?CWjz+8Y1Qk+VMd=v|K}y)zfqhVpgiFUYT|u ztHh3AgN83Je|(%tq*5S%yaM0 z{Oq1@nou^|=X^xJi6muVAJQ?)Seg`OiQXXs(8zc>zH(f=gfjHho)iq!#Ob5-xlH=T zXY5(nYBg?p9;7*c?LGENVQX$tnlCE0rs7&8(whLtMvpJ==b0~bqFxvaalqIOJqv^$ zE=|+JotCVREY1M|92FXGuzq5Xot#~}zPuQH{3-4ihzBwMc>a77x%vlk7hp$WEBt`Q zInf=VkVI#DR)MsphZBrTlvNzbJoxTizvNhs;#G&|7v3QW=z#S_?QfR?C)7?>zI$x5*H38H#y94`6XM#84uhuOkiOWQ zDVnfMs~SPqvCfv>jk3u*P%fi|%~$W)P7v(j^rZ{f=OBPz;os`U?KK6=k^MjvMoOHNL|+Nb%; zclDh8@cko=nq5^CZTCpwkDb`;g?vcADHCwl<8TkR{V?Qr=M5Ssq9}=5X=|sKRC0G4ckVGg}HQV?XrymN&Do2h;IK~_{KX&+$s-$N2_}FP>iT+i^4k5D zFQw1VyvSB_LTs)yu6GOHu?EZD$$h(buHxg|vKDxbKb1ygl>P4J7|Y?Y9$ev2#&){G zc3h2Ff2k!uMI;cDnQ5@amRLc7rJ!~97sQKv=f8})fexlU7>l|oZ5uAf1XW%ww0m|634J{>o#6qtVhg@F<0bw6E51KgTaTFqu@IE0_M^Ba zYEwd}WOD{Fz48tS&lJsbWEe362uJf58?onE&1f}B$=@!P^7kIP9S$QKtIMcXd*I=q zFiZ{w=J&`c&IF$CX1Dm3#nck)UgzQ)ZDIM&Y^~hF;`)eHCRyzlpgnGfK9PWmHK{h!zv9q1d@0}x4S*i^C%VWe*H6@e zEE|?ysUR17UXhCnXMfU^mGTmN1;!K<=e$#cjd1=h)j)r2?Pc0#8ya$EYf z;7p+hK4$@C)wX^s|BQ8ga`ZYHspd_i7R}MWz?_9DuScwbf;r4X|NiQT;Hk#p>J~rw z`n+RTH%jGei%y@iJ?QSq#hsVwBW6?ZVzsDmlF*^Pzq8+E-C0J4@34vRcM8v{Ip7#g z<0^@3Lyh_mmDfym-^-|d26f+U<3fDT#ZJer#ufLeAsgJ`9{gLG{XF4SSpt$q7Sp6d z8M9c{vpobO3|}s%OZ=}i>R}-mC;7j_Z^Nt>4j~-YK64mHzv*U2MTa*1rXs-I`b*7r zHlSt4W`)L@t+5-&1VJdf;3Ty|^G@o^n2ALR8YWF^ah<8{p}o{N=DlAT|E3PEf}TG6K(UssQ!AV z+IsY54dHEp#RYlRn97Qk=-@|7d3N~s@#LNp*`5|XKd%4}Hm86i&Sr%}_}#ZVfDaX< z2E5UeMnZk9zj}oTfp~t^Z;3&pCP1We6nh;Jcvdzyg7KUt+=|H-{njmTWvUr_{SARt z-5r2Ld9Ky9bthe0pl)Z0798I1Iq+9yLQp1!Ew*LZNLLfXmz{@{F&zrv%dQt=m-xtq z5gIgU%xBP)xktKf9#2MrTF9@ktDxJeHp97G<#7hP$7sPypSUaDg1ALK$?lJ+Pg(oE zFK0S+-wUrvb7HU~aJ^typ@W7Zjy`mwu+-?%_g{x4S*eD|p;j1Tq)6ZsvJ2j|4_COK zHoxnL^8K)cx?y%9OI*(L7FqE;o;FYJz%PKk%&P;8ze7Qt&nGX|?9v#g+j_YJr$7~n z;gV;?grS0{3I%YxRk<>rx_=Yb{+RE2Waxw@6h%wVHAMdsb52gNF=r6nTBCCwphO~N z@Mh+Zcf>kV+%t1*f;wH5sYpRaMWZ%fU!^9?L*%BPQ5cylYReTsW*$=?Z1}J71ST`J z(VhuMzf_5o7)OxKR95uo%pF?px2Dg&#dMmVW!-BlemiohUTb7cpk%*@%x&3XE3So3 zl9a0~hwsyvnJc%8}Sip)Hp5#)Z@9p@v}@_$Y;&d z3EA=_6+P8$%@!hi;$zq9@L74{gP+p-g<;S4_`rx2Z4yP&#m#5!j1MC#JrN{qp^5qq z-kF(LK0=~g^5!J?M4s=tVsIhS+gU>3r(da6vq|Ea^*ipd(#^`<_W8f`nUi#P0<@|l zi_}Xyh$z2FCI?(>Ox?ls5sjh3GY6=LMcgqT@7`O*&_^m7j-R5#&l;1j`wp-AhYPX1 zMz4=pYg1=bQIIDhtw^5HJ|+8+`l1_pp2?!{mxpht&4_}4o4e(WQ6pT#uZVPh862vs$WG<6TVIe9t@IE(eAyZwx)`XtHzNB7NbYwl2LpGnr#d)Lx;bk-{>=U- zU^!(JY&%(Dbi^r}e)4#--M@eGSr@1(IPoYa@ zQZS%&Ft?SsqUMU1d!xXlMzaO?x2U($vF*_Tf7RQE&Wv{VDYr!4Ldd&&y@f8#Isr`l zBI7zEy?X+s8A_{#dbRuu##U6-IuJ|0-_nRGvr8XZkv0E>Axl_BxIV@GRhzU=3xmgs z7t2l$j_1Xg@2zmvU&sIE?o^5k>4UEDqfk19y_0(>Rkb#F)1Jmo!R~V~c%3_`fRKf( z+*Z!J-^LKc>qLWyK;4{(Tu9(M| zj(>DYad4l8iFxUy5`4{s&9@|ti6?Cf@Axp|D{AiaTuX4bw^{ugD+*7f+svF5Z^0+C|OQkI|aCZ*P0X=FFkmao_pq{_;VPBPE6e zck-Q?JoTm&@NadJ#cvMsWLl1BxE#ECyG@Ca{MwSE5L;#`EK?#83??D&H6xPdLyZ}w z)dyS%BGlp1Xd_f`rwKYu{1$57!lm_1hM{&?PeS*=Y9WcpqNJexcN>|#7>`_k5PJIpc`w||MFXxqmUsl>$$BbJVDG@rqV)ExE z%du4Kr;M29@Ym=ajtM|!XJ_~HhuWu~_a+4>`M}yv4=oor7?vOl7{bzzUp=yxSCXSd z15j+1Q7zXu;+Ckx8O+M6b|ZV-WXe!ZgBvfWP=}FyZMl>xwgTg!r!FHlm$1)Y%N`^5 z0&nZOi6ieTR8D7{pIJrPV3&$Cd0Q8o$3UwvPV{O8(K#;t#1v~RQ+-ME@`ehk*~LiL zA69D(Q;7DJ0uA=JqARQo1PatUjv}`RHYQu^FHSaR`PUdDniOGVKgJqtgx9*Yn8Xc_ z{}!%<<3F@pggPsviG6_GRzLHyLKJz>s$p2L07$be z&(~)r5{`K{^36{C`{EYM;7#mU?_1J43GnIU<8mea)Wk+-PvHH$NUV@!Yu#eaeZKlE zLt0k+%QQ1+AY<^415M5McZeO6D%fP8n>WI&8*M}BWKL_Og92AenwbUUJ5wH$U2#12 zi3|){``@`{bKcLuP^*cdg|r0byEJm3?+zmLilbT4QjjXti4y3bQHLsubE{3r^~(!` zI5dBTPhoDOYb>4E&tO`m9iO8wWa?KpI>&Gr4Z)RoqK*#1T`me(W379?05R`w@L_BG zm)%vcZtI!TD)J($`y%zl+E0t+Wnxl(V9fJqXk0p)g(Z#~+d9fd_+bAnZAfjUio6M3 z9zH(y<}On?01oy$sObo{-)*nF>0RnYz*-YtySuf}LNRfhn9YP!@ORI+obUEvb>Gnv zymotjN&!lr{EFl`9^R~vB`wqG^n|>o0D7bTEqIIw<1>q(VuD^UjDIlczW+6x?pgQI z{zrZ$R|VDi@*55&$E~;F&m=YXzjUs8IovMl09lGibV@s`OuNO5J11moe2c4Z9A9=j z_oTa+B!ntFIAEDv9BqR+g5C!$R^e#S==J=D*$VS_Pidd^_x%}Jl(Owb=w0FNCzOKA zu(V(HD?*x@$u|-dtpha3zBZ>j8lLj4oNgFwGuOUQKW6wgu-0swT!cGMpK1G9ui`efd3=bH2EG z5srbg|eJ)iXLY z;pmT{w`-`?hDl~7Bxag#M`amvO%5D~h5T+_`0oM&zmwGB+qVieS)uuB*Cxz;8XqqH z?p~&UF!eJ;ipju(^?V*Y{BSC;GUju&Tu-{UeKXr>4}UCiv>-O3GKHMS^kD6~@)hU! zaD5-y_`%aSlg+I4{p19`=pNEAnNd|&bKN$k`L8hk1n z6|fvsu3oB_dh3{0sr@~9`n^7%JhY`iGHQpv;Dk`&4K-g#POWc`TLH74wuQCnG^A>E zY#!_Q<8kwsE&`$^_eCG~j(iH0Hjg=B23Qnya>A9F1UO1;;_E4}`2lJC58;Ep6M!ya z*(7)aszaDPyw!Gyd0d4OsfAhTXWMxC%gnQiOs{5y`t8ZLx0Zz5j?<^bNK6~}2F$12 zjp{5E!y@cOW|!0r^iSY7D8!S)uZySZEo;wzURrcD`KGKawPPjKW%2F?j-~QCB={%2 z<#ahZUIGqp=%zr$j&L10Wqd*|+P;~|t-!SNee#W&`o9}BcO_g+qDQVJ1|+=Gu4u_S zkb~QYBuwM96*l7=1jgZ%&w5?AMg`H*?eyAE;)feeR593cCw2H(_yTRXqxPyp8(_`o zukwSVCavjLyd{4|k!4AC;)f_Z9*KtK{=3 zhRuH#@IwI<8EZ-3vsULfuupib_sC5>jPCaAuF6eGK$9ln%te;-y z`q|~jFps&h@#g~K^@!ZDpL1V@klE)B@aDN(_$Fa~Pp36z;rJfA2zMPa;4-Ywa3Mza z$7#&mMr|r$cQ2Lx!k;mnx4U&8&$uD3vXQ;8!CubzdN7-JO;dRy4UronM?9E83qaEd_unf{kx2>BlOqiHY(h^ z%m(a?`Wh3*g`9>#yxTyOvp=e+qFZ+k>;7L`li9Oni>I2!I;|sf0JlUTLD&tZCVhsY={r3@tA+hN4;zd*Pj<~bWba%b4G&(gP= z^}AbVj8cKzOQyAy+@?K!?Ms6UySts&9o+m`YZner(=rx%ny!-MI*o*dvQcdRMg}_{ zt1l9>e$qtgC%&=JqIddgN#b&3B|A5z6t>ayOHn?Pm@dW{>q+^8c9IWT=C8ml>~;(* zu92=2eA{h`sSmQqjcYLtvdKR`=X>~0cZ~oaMBBoUF@SbQ_>iGvTrfB5J)ZZr5sgMz zbl(T7!`G!Gsv3YG?H&o4_*C6cto$aqm)O{4(PZxr@lP`x!pfgwfAgJ& zv7*k#a&_L1ut-jMZ#_;b-%mNsqZ4IG(K0BHW~)@z>NIA=>}vAtg5My-RpMkP{rbbb zo@-44YNm+P2fVG32PTZ)@M&oTh*aOZR5?pCXd`$}TJrOtcs8MX0xAG&ySK*YcDn-Q zZt3_>1ii%CQT5_8{0?fqZ8veE=n;RO7OS@q68pBZ!n0SXQ)uG?S@xaOU3BJ-*wS|5 zSDu(Xd0bYkkW0l259mGw@spX^FuO9Db`HK2$ivXmS?AMQTn-}^Q=z7u3j%vQO= z8r}?ftai&Fv{%NYB(3iW$V`xQP~9$IP8%bocS%{^dA=Rn!i5BHl9dvf?htu2s%dKU zP+}6{MQgBus$1gt@r=%X#1DL)sec>tbKGfXc05 zJek~E6dfV^*fGZz3M&t}ephq9hqbIRSDSULwi&q=jn!GS!|OEkt})lt`b-F;Q+{Yu zs~!z*gd#_D9EBqM{r@`QN$U+rbx}E z@}vrk2G{&yW^GtGJ(S487ESTG>UaFIp3}uz`|iU#w1B(F5|!p$&dqR>CM?}jnb2ii z@1Q~1$oNO=yrqkkF1|`t|M!o62+x$Q<0qYJ`N}^uysb-|MqOs^8hzhJ4(GbB`HWxW>^VkX=;Ec^{sgBJX z0jZ!|gIKTmO##ek2ZH!M=b^QSGXCGl%xX795vUA0iDu|>PMN1-W5v?#KaUg&c4ivo zqWa#@;6KgA8SZ2xE0SZ9Q2Kg8h{y{iHqO@H5Y0w6^S3t&<5cGNW>D}^gzRl6SY!uzs^^4!@B;et-l zgyb9h@ZF4{+vZL(6a)A8*=EU=)cU<~Vy=dHAo~nBMr%=k=jn(Dlc0Mh)p~y&R0w*P zY)R9kCAB9iSDqHJ@MA*M;=qD{CT%^Q zF-UmCzQS*9S>rfC*RR;ffB)38HX}!^eO*>+dhQ<+YHXiqzxZ?8mB6VUPZ2nD!^n?c z@PV7DJ3DH6poSxS;e}DwbZ0~U;|=GZb_F{Dx4fx}gQ~1p>o(lc)0>RT6$>HG`)?cA zLEc&y_X;=qB6&Y9UEje4U+GfY`z_>5=z`;t(KvMjVu?B25?i*A@+c9_Cs1G;Mh|^; zm351x7F6=vn=wJqER^(tq`flikpfy|x4xHL6N`m)qZUPWL0)W2UEuoY#BuzE8ay}l<cM|q&BN@eZbaik9U6Tj z)htHc3>G1O`KA5s9xnG(;}fbho}{>ZZyXXNf+g&N$g9u^U>0=h^(E^$S0(TzDY5LB zaPzW$&?J&Y&1t#eaAv+zw+m&x7CBg=H)S_Rb!a&Ep5V!MHmEIx(wpo10Jo z5IyjtWG@^+UWsmeI|%Iyf`0oT_8?6QF?-+Y*2By#Kv+Ab@1Ew!NF$#6d+=TqBnSI5 z5`RY~7uuLP-zM;KdXV_J`Q2$F1;l6gj_bB!7{5obSlp#Fp!~?N6MHzJ>$}XDS5O5P z=IVX22{CXr33*I{cFGN}%saPo@qY1QcQj1`Wqp0?fp;&`0J#4pS2DFfo6|fly?_v7 zf_&R2n@8<02>o2F+N8EtY#H|9t3?2Z&TxzIW)`{hhl$X3eluZzdW}UEtyl#pz$@3K z7mYC&d^wT^&r~VcyvdUXp~azR>^bXX*G0&7liFrIH$cR?Oyrpmgr z>;FUE6*6L)<(b94j}t1G3@{?pA3S+%d?VEtGI4jZa;H~0Z}0OY&c7D4nj_xNIv?|f zVq<_Y*K7Md#YW0iAcsOX2KCS3rH0^xIn5`)qp}M%#t)?~NsVCZD>9{juzr>Kl|Ypf&rsQChczq0or_<<7k#>o z2J!rr@Cy$PDcv#G^xZN+Y{P0f+U49@{K|k6mH*4dqhKO1>H^u4h!*S)CT7)h5h{~C z*2{mtuno8oXGV$a=R(SgM)#8*SKs=Zb?$$A;MRfp_?Bi+90r56~vWlDd@7ZheJQp50OkmPe#%#T6kPO=Xh~TCZ{0PbcBYe2#&MJBB#FGxah> zF@DkV`r0+bikn;W3gaiKe+2Yl3cECM1@z|J0X|O>(j0wmUt^Da@Aw@wt{6goA!(^I9jZ7a49;=m$i8R(?-| z+NFlllLj*9O!Ya(#EqT{%nN}vi9w*OZTd+R@on1`$7rq`Ar_OlViKWbYuK18F9q&@ zih>h1wPaG>h5f9>$H%AtK!htbE|Ga9^^J#u5)jKR1eJ#9BB%gG*RkJcmf*@E#)aVl zxnbFTR6CrXNj8I!M1sRnI!@|Nn2cm9Kv1}|!nJnK7l7a%;uL$B!o>sA&YS#w8P($f z*Aj`gq1NNbSk9!$lM6Q7-2Np0)UbTOC!vCd;B)#X5(yA^ivsnms#z%WW4NkxU^1!5 z$U7rmF)?4#19oTA4zCM(+j&sFmwd@U6bcYW)T~=eBcwi2Fm#7vc&#;b41q0_B8-Q` z^w6N8Nyt?h8U-Q(tI?!_c*ciDSBjp$6@=u~k=HsqZM1uyZES$A#y1enS0>-~%OD{S zs|dXDxzjJr@mS77gb>G{pG2PpN1U-WuU@iIor;}b^^FxJUs;l|-J{y{!tVF;UZ!QE ziHsw@=o!?mVit`{KE_bFU=6`}V2&Z3f@5)U-$7@@|W~f%(1ljZgIK>=e{NSQ?=DynS5Vd=2X5o4k%Hae+;5mhAW zf##U)s+32fM6q>pxln4Zg+e$40HBzs84`Dv=22<{qaOZ))f-$csrp;NSX?pxNvQ#l z0JT}9)JHo%+uZaJA7c#C3>po|1rC3z3{hHRdFp0N;#wqhf2N7nV*I>jS!@n>i43Lk zT{qj)_e;*~CM9>$w5a`6K|G+Wfq(qi)GZ+l*eJ~`Ke6iUSR=8elJIqyOp&uSJ)wrX z{45kmSWKDnKz~TOjldmgOe(qRfTOgRu&s+1crEEt3+GRSEqEs+Uy!}=k6#^=$Wdsr zG<3w#_!B#=CiBRT;(klzCJy~j&Jn7xn;&Y@%As#UiB|#)(=E|aYEI3}uDlLxmIjO= zIx*{jEo1Tx{vnNK{gllO=M0ss?dO?@Z!|G*dkZx?oV9T(cvO~LoDQ4D zR)d}GBCNlDaAcUXVB_49G{cR3K%i68pTw1J>ia5~2b&E_x+TI3DMM)9>n(^*hCfuB zyL7eUPWXtFcwY_V<8DseJ+c(i1Mh_yi5Y}t5Cm(A+S3?(bvk??%tk|N^nR7YMxAbk##4`Iv9SX_OT zax9m4kRHuoD+){OU%X$T?<~iULWFo`6aj7*qUjHE&p(p6ba z)!EP(lCvb0!-`Gb--u#yFV0%-Wz4ZPHpsV8v|{X1d`&4DNj24OJCTElJAs4!4vcUU znw~SX_8P4Yy*?@RFI-cz=}-diZRO(T+FN>NIoe7>!L7$iZ4q?Dg~GrNN>S`|iLCvp zlW*vyfPc|yMubf)jRua!7<6bTG3{fktOgk_g3+)S*IMqm-gS)H2 z(FSbEm7#VeCQ8a-=Q02+fZ#WPuv?jafkfI|+-oyJSH!)}KlAi+{%t!6;Avpuk_BPl z5*K7eMW~LD_Y=F>x1wiKEO7jlHM59C3>8H**j8oAEMYs?K@;mxK>|bw34viQAj!0~ zSHgC20&5JdP+AnwjPTRkMD}+x=|eb|>D6Q4vy3U+OjvB&=eWi#4PUvq{%-*XkY_ zWP(hU0}j)W`k!jJg%qGvnjM82w#c>mv4JT|xR7{^jn4%n;}`KaT%2T8v^Q+kK5;s8 zGW9Jb?TmC--h>NiAt$!?= z*8YJ-%FR4;6ztlTX6G5 zw75#P6D(4X@aLBi)-~|8=O*2t>N_|Nzh##1Wz#YJJ~I4wEKz!R$JH*tHkdkTu#&qG zcE+nwy8A&vUP9pGhw#)b26t5orbDO@b4iMM&0EsM*Np5H$W#72@b?~04@m@CAF)Uc z&9^U)$@H2bs0BM2#*pe zrq_pjRsg>c+SAlk?3unzj+Ls=F2Td| zAepnMJ8#9XocqogEgC?EP~Y=$mm~Q>{O1 z!uL(uVW;IKt(O0S483t22L*Uw5y*je#bSD|^za-;<|Jqj`z3lLwLtZ{BVtO9I@RIC z@;S0hTI(jqjgS2o>?i0o!H>i`oHC8L3bgYVFG2LUI{L6o_xP8u=RGLnjN%t)4{M0n zqEm=fO+cAFqWW*V%YYmyL7poh-4OalMSme}sPnLxpe}d|WFGe0t9}SujE5&Up*KW_ zQ^8m{O1QN;;G=Hwq!D=J*R^(rk%4%1Lr3dxzv*Zb%L%bNqnoX+tDLjn#~cut`NMtt z##4=N=bxXWe~xSYZde|=Qdo2|U+1VGaI$|jQp{a3`=)mTV)9pOcW@hSozNsCb^t-KR23IP{T$_GE?f(41eZo^e zafKwLx54OcW|a$QJ!;^fX=HC^+M54~-Kw`gr&QwU@JL#-z~yh(V@z;VaPUxtcIBAi z`X$lT^Icch9QH5e+sSUvByzeRK`k_pCGd9i5wfbL@VWO{+i}e{$wkYv&J^w0}Gp>}x~c9oa1Xwv-~uq!=EvW|{zD-!U>Uu|HT4*~JOPoH=lqc^6wE}|Et z0GVw9)B9h#F)Mf_Ujl%Lr~{Nu7fE@K#hm#rpA+&+qDP1cWvXW2wc;KlBRKG=mI>ND zPJZ4QK)|h}T>XfV_oJrIz_$-xB2So5+N+CQ-A!|b7>b|3-!5H6QWmR6paB7tqF<>w38j+4jIcWg^(L26^&kM}?RBsKjPb3K_!-Voy-w*1FOwr2pKSJ(0 zC!6}vG8Z?d_}Avr5gpm6eP?W=sicxB0&k-}0uy0{NLu#5DiTt3`0G z0%p5qXrga|moi6hMb4Y6+&#dff6j}#@qF8?>?AlBsWFdwlE&C2pAaof9`#vRomH8V zm8B(72c{VO7OJ<&qRl26VYtmh1Ifm@5YQr%QO)=4dRTh{v2{L23xaL2Nc>o1sc9)} zA;xQHi01`Quk2lrGhbI9ia5UCv(zDO9<(Z-S1)I*_6ylz&Q339c(b17%+xo4?>Wn6 z($TUrAo#lQQ^k=Hr{;H=l!B!4thaqSymZ!aHIW!M)Qo!@NT^>{muF@R)xC=4keDKj z3~2%FPxLBC)21I!8T@@u7+!GvZFE~~>NDNT%f9$sD+L+Sg-jZi3e88M&APzj+Ai@B zXJ&N1Th2JYlI|#TCQG;T8%r%%$ZZld7iB_4aBKy z7xdrR=^l}HqA zd+mI)Mi456z^)UFpHJ;d}l z_d&aZxxw4fHG*37-_WQ^_snjyoFT2h`Sq7k5I3_dPDhO%r%JRNO?HPBWE1igFbuy- z0;jy^qK_fHhEw$dsE~c_P_HZ)`NEg{P9a+xO{Clz1}jZr;ywdN?M{S2T&?B`TTV`n zqrJT$Av8eoI=T1G!So^1dp2v`^5m6^s;5Yub~tZ{yE{ZtpOZ6bmf>={l4Q9+Z_*M? zlZKY~N+EkDAJmH{Q|y~GwlU*FM(EtxFw_k11_!vC)dm6{%UA9 z5YEby?`;fLl?@v)0<=d_VVLS~_%UxqQ(t;Qu5xsI`ySwNm%s4~XbSOUAVQXY1g6Ab zDjhXbC>LC0eoVh;QyJN2@Qph*oSE8M4d~u(m%OO%D5jt6eCu{evxdZrBFlrLD5Ke^ zR$dgQ^kx`1)WUBqtOz1J3kEZ0=a@B+Sk zFZBTPzY{>HjN;qoBk#UDN8JcKS0RB^j602YS6jPG8On!#&Klowy-C zKb*SA6l$|z(mT{8yslnwzRk_=p^++r-_iC|_yXLtWXQX&2gVgw*H|aC^gZ02bxpJ< z2uER6my>xJKR{k*0CtBnC7#`&NBC_FN4aH&RPL*9^2mHST6;QIj>|2lV;3cNUTi*I zQ?ZN}^o??DCoQjV$==~GAKYt?rr42{Wtul6A9?zjOe-Tl5LcCc|c<9aZ6smsY&k{MaGQs^7oDT zRFRJ2-VNujT~8lBNHMm^pW;VPxvcvQk$Wn1TczA*Z++aZ$Aq0CAHVQ)^O_)^e3bO3 z5v6b5e%iA~F@+nw*wq-2x}aB$srZ#Jm==E5*!ESkR1Vx38_0jvwDGtnuxP&c@$AD+ zZZ~@8zRfs3xDUnPpz48#e>ZliD5@#1N`8H)I)lqs$n0}7$-!#(M2aNQmdNQO7t!Wl zUkOx!-i8wrD~=Sn!JouI7DI zO70F7iGL_iFPoJ5<@G1I_lY2QpNfOYf?d6Y?j)#)@UNsiWf}aRY9H)B(6z|0c2l~3 z@jDKj@z5jy22}hX2{o7>rK>FWbCMe3P%G7-L9Q6MI;4+a2 literal 0 HcmV?d00001 diff --git a/index.html b/index.html new file mode 100644 index 0000000..547486b --- /dev/null +++ b/index.html @@ -0,0 +1,279 @@ + + + + + + + + + + + Cat vs. dog drawings categorization + + + + + +
+
+ View on GitHub + +

Cat vs. dog drawings categorization

+

A university project

+ +
+ Download this project as a .zip file + Download this project as a tar.gz file +
+
+
+ + +
+
+

+1. Introduction

+ +

+1.1. Goal

+ +

The goal of this project was to give a computer a drawing of either a cat's or a dog's face and let it recognize with high probability whether a cat or a dog is shown.

+ +

+1.2. Scope

+ +

First I thought that I would get lots of people to draw cat and dog faces for me, but I later realized that it was far too time consuming. Therefore I had to change the scope from recognizing random peoples drawings to recognizing my own drawings, which is obviously easier. Everything else did not change that much, I would just get better results.

+ +

+2. Preparation

+ +

+2.1. Drawing and taking a photo

+ +

The raw drawings

+ +

I drew eight A4 sheets of such cat and dog faces which resulted in 64 dog faces and 60 cat faces. Then I took pictures of them with my digital camera.

+ +

There was a huge difference in quality between the pictures I took with my iPhone 4 camera and the ones I took with my Nikon D5000. In fact I was not able to use the pictures I took with the iPhone because it was impossible to find straight lines in them.

+ +

You can see the result here, one with the iPhone image as a source and the other with the Nikon image:

+ +

iPhone vs. Nikon sample

+ +

+2.2. Photoshop

+ +

I cleaned up the drawings so it would be easier for the algorithm to find everything. I opened the pictures of the drawings in Photoshop and played with the contrast and brightness settings.

+ +

Then I cut out all the drawings from the big image and saved them as a black and white PNG images without dither.

+ +

Steps in Photoshop

+ +

+2.3. Resizing

+ +

I wrote a small shellscript which would take all pictures and resize them proportionally to a max width and height of 200 px. It also fills up the missing borders with a white background color. To do that I used the ImageMagick software suite:

+ +
#!/bin/sh
+
+NEW="new_$1"
+rm -rf $NEW
+mkdir $NEW
+
+for i in `ls -1 $1`
+do
+    convert $1/$i \
+        -adaptive-resize 200x200\> \
+        -size 200x200 xc:white +swap \
+        -gravity center \
+        -composite \
+        $NEW/$i
+done
+ +

After that all the images had uniform sizes and colors so that I was able to compare them in a meaningful way.

+ +

+3. Feature extraction

+ +

The next step was to extract the features from the images. In other words find things in the pictures that would be unique enough to make a difference between cats and dogs but broad enough so that all dogs would fall into one category and all cats into the other.

+ +

+3.1. Straight lines

+ +

The first thing which came to mind was counting and doing other stuff with straight lines in the image.

+ +

+3.1.1 Canny edge detector

+ +

I used an edge detector algorithm called Canny to preprocess the images which - as the name implies - finds edges in images. Because of my preparation with Photoshop it was quite easy for it to find them. It is not easy to see this step with my drawings, so here is a picture of how it looks like when you do this with a photo instead:

+ +

Canny on a photo from Wikipedia

+ +

It basically removes noise with a gausian filter and then finds the intentisty gradians of the image with help of some trigonometry.

+ +

I did not implement the algorithm myself, instead I used the often used OpenCV implementation.

+ +

+3.1.2 Hough transform

+ +

To find the lines I used the Hough transform algorithm. The red lines are those which the Hough transform algorithm found in the example picture:

+ +

Hough lines

+ +

It essentially groups edges, which can be imperfect, to object candidates by performing an explicit voting procedure. Detecting straight lines can be done by describing them as y = mx + b where m is the slope of the line and b is the intercept. The line is not represented by descrete points (x1,y1)(x2,y2) but instead as a point(x,y) in the parameter space, which makes detection of lines, which are a bit off, possible. In practice it is still more complicated, please read the Wikipedia article about it.

+ +

I did not implement it myself but used the often used and tested probabilistic OpenCV implementation.

+ +

+3.2. Line features

+ +

I extracted these features from the lines:

+ +
    +
  • amount of lines
  • +
  • average length of lines
  • +
  • average angle of lines
  • +

+3.3. Other features

+ +

I also extracted the amount of black pixels in the image to use it as a possible feature which was not using the extracted lines.

+ +

+4. k-nearest neighbor algorithm

+ +

I chose to use the k-Nearest Neighbors algorithm which only locally looks at the neighbors of the document in a radius predefined by the user. It assumes that the document is of the same category as the highest number of neighbors within this radius. +In the following figure you can see that depending if the user choses k = 3, as shown by the solid line, the algorithm will conclude that the document in the center (green smiley) is of the type triangle because most of this three neighbors are triangles. If on the other hand the user choses k = 7, as shown by the dotted line, then the amount of neighbors which are rectangles is greater as the amount of neighbors which are triangles, so it concludes that the smiley is of type rectangle.

+ +

k-Nearest Neighbours as a graphic

+ +

In the picture above you see how it would look with two dimensions. I have been using four features so the algorithm had to check the distance to the neighbours in four dimensions. This is not really more difficult, it is just more to calculate.

+ +

+5. Results

+ +

The results were quite encouraging, I assume it is because I only used one style to draw the dogs and one style to draw the cats.

+ +

+5.1. k-fold Cross-validation

+ +

I used 10 fold cross-validation for every test I did, which means that I used 90% of the available data for the learning algorithms and then the remaining 10% to test how they performed. I repeated this ten times until all data had been used for testing once.

+ +

+5.2. Results with all features

+ +

When I used all of the features and three nearest neighbours I got amazing 100% accuracy, which was kind of suspect because that normally means that you most probably did something wrong.

+ +

+5.3. Results with a reduced feature set

+ +

Therefore I tried to reduce the features to check if it would perform worse.

+ +
    +
  1. When I removed the information about the amount of black pixels basically nothing happened.
  2. +
  3. When I removed the information about the amount of lines and average length at least I got a couple of wrong categorized images, the accuracy went down to 95%.
  4. +
  5. When I removed the information about the average angle of the lines, that was when I got significant errors. The accuracy dropped down to about 60%, which is still better then pure chance.
  6. +

So it seems like the best feature to detect cat and dog face drawings done by me was the average angle of the straight lines in the image.

+ +

+6. Future study

+ +

The most important next step would be to gather many more drawings done by other people who use other styles to draw cat and dog faces.

+ +

Then it would be interesting to use other learning algorithms like Bayes, Perceptron, etc.

+ +

And then it would be interesting to use this approach on photos of real cats and dogs.

+ +

+7. Code

+ +
#!/usr/bin/env python
+
+import cv2, cv, sys, math, os, numpy
+from scipy.spatial import KDTree
+
+def extractFeatures(label):
+
+    directory = "img/" + label + "/"
+
+    features = []
+
+    for fn in os.listdir(directory):
+
+        img = cv2.imread(directory + fn, 0)
+
+        # find edges
+        canny = cv2.Canny(img, 50, 100)
+
+        # find colored
+        black_pixels = numpy.count_nonzero(img)
+
+        # find lines lines
+        lines = cv2.HoughLinesP(canny, 1, math.pi/360, 5, None, 10, 1)
+
+        lengths = []
+        angles = []
+        try:
+            for line in lines[0]:
+                x1, y1, x2, y2 = line
+
+                # Pythagoras
+                a2 = math.pow((x1-x2), 2)
+                b2 = math.pow((y1-y2), 2)
+                length = int(math.sqrt(a2 + b2))
+                lengths.append(length)
+
+                angle = int(math.degrees(math.atan((y1-y2) / (x1-x2))))
+                angles.append(angle)
+        except:
+            pass
+
+        # print out everything
+        lines_count = len(lengths)
+        mid_length = sum(lengths) / lines_count
+        mid_angle = sum(angles) / lines_count
+
+        features.append([
+            [lines_count, mid_length, mid_angle, black_pixels],
+            label
+        ])
+
+    return features
+
+
+if __name__ == "__main__":
+    cats = extractFeatures("cat")
+    dogs = extractFeatures("dog")
+
+    test_count = 5
+
+    test_data = dogs[:test_count] + cats[:test_count] 
+    test_labels = map(lambda a: a[1], test_data)
+    test_features = map(lambda a: a[0], test_data)
+
+    data = cats[test_count:] + dogs[test_count:]
+    labels = map(lambda a: a[1], data)
+    features = map(lambda a: a[0], data)
+
+    tree = KDTree(features)
+
+    for t in xrange(0, test_count * 2):
+        d, i = tree.query(test_features[t], k=3)
+        print "-"
+        for j in xrange(0, len(i)):
+            print test_labels[t] + " is a " + labels[i[j]]
+
+
+
+ + + + + + + + diff --git a/javascripts/main.js b/javascripts/main.js new file mode 100644 index 0000000..d8135d3 --- /dev/null +++ b/javascripts/main.js @@ -0,0 +1 @@ +console.log('This would be the main JS file.'); diff --git a/params.json b/params.json new file mode 100644 index 0000000..1f108d9 --- /dev/null +++ b/params.json @@ -0,0 +1 @@ +{"name":"Cat vs. dog drawings categorization","tagline":"A university project","body":"# 1. Introduction\r\n\r\n## 1.1. Goal\r\n\r\nThe goal of this project was to give a computer a drawing of either a cat's or a dog's face and let it recognize with high probability whether a cat or a dog is shown.\r\n\r\n## 1.2. Scope\r\n\r\nFirst I thought that I would get lots of people to draw cat and dog faces for me, but I later realized that it was far too time consuming. Therefore I had to change the scope from recognizing random peoples drawings to recognizing my own drawings, which is obviously easier. Everything else did not change that much, I would just get better results.\r\n\r\n# 2. Preparation\r\n\r\n## 2.1. Drawing and taking a photo\r\n\r\n![The raw drawings](https://jeena.net/images/2013/catdog/drawing-taking-photo.jpg)\r\n\r\nI drew eight A4 sheets of such cat and dog faces which resulted in 64 dog faces and 60 cat faces. Then I took pictures of them with my digital camera.\r\n\r\nThere was a huge difference in quality between the pictures I took with my iPhone 4 camera and the ones I took with my Nikon D5000. In fact I was not able to use the pictures I took with the iPhone because it was impossible to find straight lines in them.\r\n\r\nYou can see the result here, one with the iPhone image as a source and the other with the Nikon image:\r\n\r\n![iPhone vs. Nikon sample](https://jeena.net/images/2013/catdog/iphone-sample.jpg)\r\n\r\n## 2.2. Photoshop\r\n\r\nI cleaned up the drawings so it would be easier for the algorithm to find everything. I opened the pictures of the drawings in Photoshop and played with the contrast and brightness settings.\r\n\r\nThen I cut out all the drawings from the big image and saved them as a black and white PNG images without dither.\r\n\r\n![Steps in Photoshop](https://jeena.net/images/2013/catdog/photoshop.jpg)\r\n\r\n## 2.3. Resizing\r\n\r\nI wrote a small shellscript which would take all pictures and resize them proportionally to a max width and height of 200 px. It also fills up the missing borders with a white background color. To do that I used the [ImageMagick](www.imagemagick.org) software suite:\r\n\r\n
#!/bin/sh\r\n\r\nNEW=\"new_$1\"\r\nrm -rf $NEW\r\nmkdir $NEW\r\n\r\nfor i in `ls -1 $1`\r\ndo\r\n\tconvert $1/$i \\\r\n\t\t-adaptive-resize 200x200\\> \\\r\n\t\t-size 200x200 xc:white +swap \\\r\n\t\t-gravity center \\\r\n\t\t-composite \\\r\n\t\t$NEW/$i\r\ndone
\r\n\r\nAfter that all the images had uniform sizes and colors so that I was able to compare them in a meaningful way.\r\n\r\n# 3. Feature extraction\r\n\r\nThe next step was to extract the features from the images. In other words find things in the pictures that would be unique enough to make a difference between cats and dogs but broad enough so that all dogs would fall into one category and all cats into the other.\r\n\r\n## 3.1. Straight lines\r\n\r\nThe first thing which came to mind was counting and doing other stuff with straight lines in the image.\r\n\r\n### 3.1.1 Canny edge detector\r\n\r\nI used an edge detector algorithm called Canny to preprocess the images which - as the name implies - finds edges in images. Because of my preparation with Photoshop it was quite easy for it to find them. It is not easy to see this step with my drawings, so here is a picture of how it looks like when you do this with a photo instead:\r\n\r\n![Canny on a photo from Wikipedia](https://jeena.net/images/2013/catdog/canny.jpg)\r\n\r\nIt basically removes noise with a gausian filter and then finds the intentisty gradians of the image with help of some trigonometry.\r\n\r\nI did not implement the algorithm myself, instead I used the often used [OpenCV implementation](http://docs.opencv.org/doc/tutorials/imgproc/imgtrans/canny_detector/canny_detector.html).\r\n\r\n### 3.1.2 Hough transform\r\n\r\nTo find the lines I used the [Hough transform](https://en.wikipedia.org/wiki/Hough_transform) algorithm. The red lines are those which the Hough transform algorithm found in the example picture:\r\n\r\n![Hough lines](https://jeena.net/images/2013/catdog/hough.png)\r\n\r\nIt essentially groups edges, which can be imperfect, to object candidates by performing an explicit voting procedure. Detecting straight lines can be done by describing them as y = mx + b where m is the slope of the line and b is the intercept. The line is not represented by descrete points (x1,y1)(x2,y2) but instead as a point(x,y) in the parameter space, which makes detection of lines, which are a bit off, possible. In practice it is still more complicated, please read the [Wikipedia article](https://en.wikipedia.org/wiki/Hough_transform) about it.\r\n\r\nI did not implement it myself but used the often used and tested probabilistic [OpenCV implementation](http://docs.opencv.org/modules/imgproc/doc/feature_detection.html?highlight=houghlinesp#houghlinesp).\r\n\r\n## 3.2. Line features\r\n\r\nI extracted these features from the lines:\r\n\r\n- amount of lines\r\n- average length of lines\r\n- average angle of lines\r\n\r\n## 3.3. Other features\r\n\r\nI also extracted the amount of black pixels in the image to use it as a possible feature which was not using the extracted lines.\r\n\r\n# 4. _k_-nearest neighbor algorithm\r\n\r\nI chose to use the _k_-Nearest Neighbors algorithm which only locally looks at the neighbors of the document in a radius predefined by the user. It assumes that the document is of the same category as the highest number of neighbors within this radius.\r\nIn the following figure you can see that depending if the user choses k = 3, as shown by the solid line, the algorithm will conclude that the document in the center (green smiley) is of the type triangle because most of this three neighbors are triangles. If on the other hand the user choses k = 7, as shown by the dotted line, then the amount of neighbors which are rectangles is greater as the amount of neighbors which are triangles, so it concludes that the smiley is of type rectangle.\r\n\r\n![k-Nearest Neighbours as a graphic](https://jeena.net/images/2013/catdog/k-nearest-neighbours.png)\r\n\r\nIn the picture above you see how it would look with two dimensions. I have been using four features so the algorithm had to check the distance to the neighbours in four dimensions. This is not really more difficult, it is just more to calculate.\r\n\r\n# 5. Results\r\n\r\nThe results were quite encouraging, I assume it is because I only used one style to draw the dogs and one style to draw the cats.\r\n\r\n## 5.1. k-fold Cross-validation\r\n\r\nI used 10 fold cross-validation for every test I did, which means that I used 90% of the available data for the learning algorithms and then the remaining 10% to test how they performed. I repeated this ten times until all data had been used for testing once.\r\n\r\n## 5.2. Results with all features\r\n\r\nWhen I used all of the features and three nearest neighbours I got amazing 100% accuracy, which was kind of suspect because that normally means that you most probably did something wrong.\r\n\r\n## 5.3. Results with a reduced feature set\r\n\r\nTherefore I tried to reduce the features to check if it would perform worse.\r\n\r\n1. When I removed the information about the amount of black pixels basically nothing happened.\r\n2. When I removed the information about the amount of lines and average length at least I got a couple of wrong categorized images, the accuracy went down to 95%.\r\n3. When I removed the information about the average angle of the lines, that was when I got significant errors. The accuracy dropped down to about 60%, which is still better then pure chance.\r\n\r\nSo it seems like the best feature to detect cat and dog face drawings done by me was the average angle of the straight lines in the image.\r\n\r\n# 6. Future study\r\n\r\nThe most important next step would be to gather many more drawings done by other people who use other styles to draw cat and dog faces.\r\n\r\nThen it would be interesting to use other learning algorithms like Bayes, Perceptron, etc.\r\n\r\nAnd then it would be interesting to use this approach on photos of real cats and dogs.\r\n\r\n# 7. Code\r\n\r\n\t#!/usr/bin/env python\r\n\r\n\timport cv2, cv, sys, math, os, numpy\r\n\tfrom scipy.spatial import KDTree\r\n\r\n\tdef extractFeatures(label):\r\n\r\n\t\tdirectory = \"img/\" + label + \"/\"\r\n\r\n\t\tfeatures = []\r\n\r\n\t\tfor fn in os.listdir(directory):\r\n\r\n\t\t\timg = cv2.imread(directory + fn, 0)\r\n\r\n\t\t\t# find edges\r\n\t\t\tcanny = cv2.Canny(img, 50, 100)\r\n\r\n\t\t\t# find colored\r\n\t\t\tblack_pixels = numpy.count_nonzero(img)\r\n\r\n\t\t\t# find lines lines\r\n\t\t\tlines = cv2.HoughLinesP(canny, 1, math.pi/360, 5, None, 10, 1)\r\n\r\n\t\t\tlengths = []\r\n\t\t\tangles = []\r\n\t\t\ttry:\r\n\t\t\t\tfor line in lines[0]:\r\n\t\t\t\t\tx1, y1, x2, y2 = line\r\n\r\n\t\t\t\t\t# Pythagoras\r\n\t\t\t\t\ta2 = math.pow((x1-x2), 2)\r\n\t\t\t\t\tb2 = math.pow((y1-y2), 2)\r\n\t\t\t\t\tlength = int(math.sqrt(a2 + b2))\r\n\t\t\t\t\tlengths.append(length)\r\n\r\n\t\t\t\t\tangle = int(math.degrees(math.atan((y1-y2) / (x1-x2))))\r\n\t\t\t\t\tangles.append(angle)\r\n\t\t\texcept:\r\n\t\t\t\tpass\r\n\r\n\t\t\t# print out everything\r\n\t\t\tlines_count = len(lengths)\r\n\t\t\tmid_length = sum(lengths) / lines_count\r\n\t\t\tmid_angle = sum(angles) / lines_count\r\n\r\n\t\t\tfeatures.append([\r\n\t\t\t\t[lines_count, mid_length, mid_angle, black_pixels],\r\n\t\t\t\tlabel\r\n\t\t\t])\r\n\r\n\t\treturn features\r\n\r\n\r\n\tif __name__ == \"__main__\":\r\n\t\tcats = extractFeatures(\"cat\")\r\n\t\tdogs = extractFeatures(\"dog\")\r\n\r\n\t\ttest_count = 5\r\n\r\n\t\ttest_data = dogs[:test_count] + cats[:test_count] \r\n\t\ttest_labels = map(lambda a: a[1], test_data)\r\n\t\ttest_features = map(lambda a: a[0], test_data)\r\n\r\n\t\tdata = cats[test_count:] + dogs[test_count:]\r\n\t\tlabels = map(lambda a: a[1], data)\r\n\t\tfeatures = map(lambda a: a[0], data)\r\n\r\n\t\ttree = KDTree(features)\r\n\t\t\r\n\t\tfor t in xrange(0, test_count * 2):\r\n\t\t\td, i = tree.query(test_features[t], k=3)\r\n\t\t\tprint \"-\"\r\n\t\t\tfor j in xrange(0, len(i)):\r\n\t\t\t\tprint test_labels[t] + \" is a \" + labels[i[j]]\r\n","google":"","note":"Don't delete this file! It's used internally to help with page regeneration."} \ No newline at end of file diff --git a/stylesheets/pygment_trac.css b/stylesheets/pygment_trac.css new file mode 100644 index 0000000..e65cedf --- /dev/null +++ b/stylesheets/pygment_trac.css @@ -0,0 +1,70 @@ +.highlight .hll { background-color: #ffffcc } +.highlight { background: #f0f3f3; } +.highlight .c { color: #0099FF; font-style: italic } /* Comment */ +.highlight .err { color: #AA0000; background-color: #FFAAAA } /* Error */ +.highlight .k { color: #006699; font-weight: bold } /* Keyword */ +.highlight .o { color: #555555 } /* Operator */ +.highlight .cm { color: #0099FF; font-style: italic } /* Comment.Multiline */ +.highlight .cp { color: #009999 } /* Comment.Preproc */ +.highlight .c1 { color: #0099FF; font-style: italic } /* Comment.Single */ +.highlight .cs { color: #0099FF; font-weight: bold; font-style: italic } /* Comment.Special */ +.highlight .gd { background-color: #FFCCCC; border: 1px solid #CC0000 } /* Generic.Deleted */ +.highlight .ge { font-style: italic } /* Generic.Emph */ +.highlight .gr { color: #FF0000 } /* Generic.Error */ +.highlight .gh { color: #003300; font-weight: bold } /* Generic.Heading */ +.highlight .gi { background-color: #CCFFCC; border: 1px solid #00CC00 } /* Generic.Inserted */ +.highlight .go { color: #AAAAAA } /* Generic.Output */ +.highlight .gp { color: #000099; font-weight: bold } /* Generic.Prompt */ +.highlight .gs { font-weight: bold } /* Generic.Strong */ +.highlight .gu { color: #003300; font-weight: bold } /* Generic.Subheading */ +.highlight .gt { color: #99CC66 } /* Generic.Traceback */ +.highlight .kc { color: #006699; font-weight: bold } /* Keyword.Constant */ +.highlight .kd { color: #006699; font-weight: bold } /* Keyword.Declaration */ +.highlight .kn { color: #006699; font-weight: bold } /* Keyword.Namespace */ +.highlight .kp { color: #006699 } /* Keyword.Pseudo */ +.highlight .kr { color: #006699; font-weight: bold } /* Keyword.Reserved */ +.highlight .kt { color: #007788; font-weight: bold } /* Keyword.Type */ +.highlight .m { color: #FF6600 } /* Literal.Number */ +.highlight .s { color: #CC3300 } /* Literal.String */ +.highlight .na { color: #330099 } /* Name.Attribute */ +.highlight .nb { color: #336666 } /* Name.Builtin */ +.highlight .nc { color: #00AA88; font-weight: bold } /* Name.Class */ +.highlight .no { color: #336600 } /* Name.Constant */ +.highlight .nd { color: #9999FF } /* Name.Decorator */ +.highlight .ni { color: #999999; font-weight: bold } /* Name.Entity */ +.highlight .ne { color: #CC0000; font-weight: bold } /* Name.Exception */ +.highlight .nf { color: #CC00FF } /* Name.Function */ +.highlight .nl { color: #9999FF } /* Name.Label */ +.highlight .nn { color: #00CCFF; font-weight: bold } /* Name.Namespace */ +.highlight .nt { color: #330099; font-weight: bold } /* Name.Tag */ +.highlight .nv { color: #003333 } /* Name.Variable */ +.highlight .ow { color: #000000; font-weight: bold } /* Operator.Word */ +.highlight .w { color: #bbbbbb } /* Text.Whitespace */ +.highlight .mf { color: #FF6600 } /* Literal.Number.Float */ +.highlight .mh { color: #FF6600 } /* Literal.Number.Hex */ +.highlight .mi { color: #FF6600 } /* Literal.Number.Integer */ +.highlight .mo { color: #FF6600 } /* Literal.Number.Oct */ +.highlight .sb { color: #CC3300 } /* Literal.String.Backtick */ +.highlight .sc { color: #CC3300 } /* Literal.String.Char */ +.highlight .sd { color: #CC3300; font-style: italic } /* Literal.String.Doc */ +.highlight .s2 { color: #CC3300 } /* Literal.String.Double */ +.highlight .se { color: #CC3300; font-weight: bold } /* Literal.String.Escape */ +.highlight .sh { color: #CC3300 } /* Literal.String.Heredoc */ +.highlight .si { color: #AA0000 } /* Literal.String.Interpol */ +.highlight .sx { color: #CC3300 } /* Literal.String.Other */ +.highlight .sr { color: #33AAAA } /* Literal.String.Regex */ +.highlight .s1 { color: #CC3300 } /* Literal.String.Single */ +.highlight .ss { color: #FFCC33 } /* Literal.String.Symbol */ +.highlight .bp { color: #336666 } /* Name.Builtin.Pseudo */ +.highlight .vc { color: #003333 } /* Name.Variable.Class */ +.highlight .vg { color: #003333 } /* Name.Variable.Global */ +.highlight .vi { color: #003333 } /* Name.Variable.Instance */ +.highlight .il { color: #FF6600 } /* Literal.Number.Integer.Long */ + +.type-csharp .highlight .k { color: #0000FF } +.type-csharp .highlight .kt { color: #0000FF } +.type-csharp .highlight .nf { color: #000000; font-weight: normal } +.type-csharp .highlight .nc { color: #2B91AF } +.type-csharp .highlight .nn { color: #000000 } +.type-csharp .highlight .s { color: #A31515 } +.type-csharp .highlight .sc { color: #A31515 } diff --git a/stylesheets/stylesheet.css b/stylesheets/stylesheet.css new file mode 100644 index 0000000..b48c8a8 --- /dev/null +++ b/stylesheets/stylesheet.css @@ -0,0 +1,427 @@ +/******************************************************************************* +Slate Theme for GitHub Pages +by Jason Costello, @jsncostello +*******************************************************************************/ + +@import url(pygment_trac.css); + +/******************************************************************************* +MeyerWeb Reset +*******************************************************************************/ + +html, body, div, span, applet, object, iframe, +h1, h2, h3, h4, h5, h6, p, blockquote, pre, +a, abbr, acronym, address, big, cite, code, +del, dfn, em, img, ins, kbd, q, s, samp, +small, strike, strong, sub, sup, tt, var, +b, u, i, center, +dl, dt, dd, ol, ul, li, +fieldset, form, label, legend, +table, caption, tbody, tfoot, thead, tr, th, td, +article, aside, canvas, details, embed, +figure, figcaption, footer, header, hgroup, +menu, nav, output, ruby, section, summary, +time, mark, audio, video { + margin: 0; + padding: 0; + border: 0; + font: inherit; + vertical-align: baseline; +} + +/* HTML5 display-role reset for older browsers */ +article, aside, details, figcaption, figure, +footer, header, hgroup, menu, nav, section { + display: block; +} + +ol, ul { + list-style: none; +} + +blockquote, q { +} + +table { + border-collapse: collapse; + border-spacing: 0; +} + +/******************************************************************************* +Theme Styles +*******************************************************************************/ + +body { + box-sizing: border-box; + color:#373737; + background: #212121; + font-size: 16px; + font-family: 'Myriad Pro', Calibri, Helvetica, Arial, sans-serif; + line-height: 1.5; + -webkit-font-smoothing: antialiased; +} + +h1, h2, h3, h4, h5, h6 { + margin: 10px 0; + font-weight: 700; + color:#222222; + font-family: 'Lucida Grande', 'Calibri', Helvetica, Arial, sans-serif; + letter-spacing: -1px; +} + +h1 { + font-size: 36px; + font-weight: 700; +} + +h2 { + padding-bottom: 10px; + font-size: 32px; + background: url('../images/bg_hr.png') repeat-x bottom; +} + +h3 { + font-size: 24px; +} + +h4 { + font-size: 21px; +} + +h5 { + font-size: 18px; +} + +h6 { + font-size: 16px; +} + +p { + margin: 10px 0 15px 0; +} + +footer p { + color: #f2f2f2; +} + +a { + text-decoration: none; + color: #007edf; + text-shadow: none; + + transition: color 0.5s ease; + transition: text-shadow 0.5s ease; + -webkit-transition: color 0.5s ease; + -webkit-transition: text-shadow 0.5s ease; + -moz-transition: color 0.5s ease; + -moz-transition: text-shadow 0.5s ease; + -o-transition: color 0.5s ease; + -o-transition: text-shadow 0.5s ease; + -ms-transition: color 0.5s ease; + -ms-transition: text-shadow 0.5s ease; +} + +#main_content a:hover { + color: #0069ba; + text-shadow: #0090ff 0px 0px 2px; +} + +footer a:hover { + color: #43adff; + text-shadow: #0090ff 0px 0px 2px; +} + +em { + font-style: italic; +} + +strong { + font-weight: bold; +} + +img { + position: relative; + margin: 0 auto; + max-width: 739px; + padding: 5px; + margin: 10px 0 10px 0; + border: 1px solid #ebebeb; + + box-shadow: 0 0 5px #ebebeb; + -webkit-box-shadow: 0 0 5px #ebebeb; + -moz-box-shadow: 0 0 5px #ebebeb; + -o-box-shadow: 0 0 5px #ebebeb; + -ms-box-shadow: 0 0 5px #ebebeb; +} + +pre, code { + width: 100%; + color: #222; + background-color: #fff; + + font-family: Monaco, "Bitstream Vera Sans Mono", "Lucida Console", Terminal, monospace; + font-size: 14px; + + border-radius: 2px; + -moz-border-radius: 2px; + -webkit-border-radius: 2px; + + + +} + +pre { + width: 100%; + padding: 10px; + box-shadow: 0 0 10px rgba(0,0,0,.1); + overflow: auto; +} + +code { + padding: 3px; + margin: 0 3px; + box-shadow: 0 0 10px rgba(0,0,0,.1); +} + +pre code { + display: block; + box-shadow: none; +} + +blockquote { + color: #666; + margin-bottom: 20px; + padding: 0 0 0 20px; + border-left: 3px solid #bbb; +} + +ul, ol, dl { + margin-bottom: 15px +} + +ul li { + list-style: inside; + padding-left: 20px; +} + +ol li { + list-style: decimal inside; + padding-left: 20px; +} + +dl dt { + font-weight: bold; +} + +dl dd { + padding-left: 20px; + font-style: italic; +} + +dl p { + padding-left: 20px; + font-style: italic; +} + +hr { + height: 1px; + margin-bottom: 5px; + border: none; + background: url('../images/bg_hr.png') repeat-x center; +} + +table { + border: 1px solid #373737; + margin-bottom: 20px; + text-align: left; + } + +th { + font-family: 'Lucida Grande', 'Helvetica Neue', Helvetica, Arial, sans-serif; + padding: 10px; + background: #373737; + color: #fff; + } + +td { + padding: 10px; + border: 1px solid #373737; + } + +form { + background: #f2f2f2; + padding: 20px; +} + +img { + width: 100%; + max-width: 100%; +} + +/******************************************************************************* +Full-Width Styles +*******************************************************************************/ + +.outer { + width: 100%; +} + +.inner { + position: relative; + max-width: 640px; + padding: 20px 10px; + margin: 0 auto; +} + +#forkme_banner { + display: block; + position: absolute; + top:0; + right: 10px; + z-index: 10; + padding: 10px 50px 10px 10px; + color: #fff; + background: url('../images/blacktocat.png') #0090ff no-repeat 95% 50%; + font-weight: 700; + box-shadow: 0 0 10px rgba(0,0,0,.5); + border-bottom-left-radius: 2px; + border-bottom-right-radius: 2px; +} + +#header_wrap { + background: #212121; + background: -moz-linear-gradient(top, #373737, #212121); + background: -webkit-linear-gradient(top, #373737, #212121); + background: -ms-linear-gradient(top, #373737, #212121); + background: -o-linear-gradient(top, #373737, #212121); + background: linear-gradient(top, #373737, #212121); +} + +#header_wrap .inner { + padding: 50px 10px 30px 10px; +} + +#project_title { + margin: 0; + color: #fff; + font-size: 42px; + font-weight: 700; + text-shadow: #111 0px 0px 10px; +} + +#project_tagline { + color: #fff; + font-size: 24px; + font-weight: 300; + background: none; + text-shadow: #111 0px 0px 10px; +} + +#downloads { + position: absolute; + width: 210px; + z-index: 10; + bottom: -40px; + right: 0; + height: 70px; + background: url('../images/icon_download.png') no-repeat 0% 90%; +} + +.zip_download_link { + display: block; + float: right; + width: 90px; + height:70px; + text-indent: -5000px; + overflow: hidden; + background: url(../images/sprite_download.png) no-repeat bottom left; +} + +.tar_download_link { + display: block; + float: right; + width: 90px; + height:70px; + text-indent: -5000px; + overflow: hidden; + background: url(../images/sprite_download.png) no-repeat bottom right; + margin-left: 10px; +} + +.zip_download_link:hover { + background: url(../images/sprite_download.png) no-repeat top left; +} + +.tar_download_link:hover { + background: url(../images/sprite_download.png) no-repeat top right; +} + +#main_content_wrap { + background: #f2f2f2; + border-top: 1px solid #111; + border-bottom: 1px solid #111; +} + +#main_content { + padding-top: 40px; +} + +#footer_wrap { + background: #212121; +} + + + +/******************************************************************************* +Small Device Styles +*******************************************************************************/ + +@media screen and (max-width: 480px) { + body { + font-size:14px; + } + + #downloads { + display: none; + } + + .inner { + min-width: 320px; + max-width: 480px; + } + + #project_title { + font-size: 32px; + } + + h1 { + font-size: 28px; + } + + h2 { + font-size: 24px; + } + + h3 { + font-size: 21px; + } + + h4 { + font-size: 18px; + } + + h5 { + font-size: 14px; + } + + h6 { + font-size: 12px; + } + + code, pre { + min-width: 320px; + max-width: 480px; + font-size: 11px; + } + +}