#!/usr/bin/env python3 import tensorflow as tf import pathlib import random import matplotlib.pyplot as plt tf.enable_eager_execution() data_root = pathlib.Path('../img/') all_image_paths = list(data_root.glob('*/*')) all_image_paths = [str(path) for path in all_image_paths] random.shuffle(all_image_paths) image_count = len(all_image_paths) label_names = sorted(item.name for item in data_root.glob('*/') if item.is_dir()) label_to_index = dict((name, index) for index,name in enumerate(label_names)) all_image_labels = [label_to_index[pathlib.Path(path).parent.name] for path in all_image_paths] def preprocess_image(image): image = tf.image.decode_image(image, channels=3) image = tf.image.resize_images(image, [192, 192]) image /= 255.0 # normalize to [0,1] range return image def load_and_preprocess_image(path): image = tf.read_file(path) return preprocess_image(image) image_path = all_image_paths[0] label = all_image_labels[0] image = load_and_preprocess_image(image_path) plt.imshow(image) plt.grid(False) plt.title(label_names[label].title()) print()