diff --git a/1-js/05-data-types/02-number/article.md b/1-js/05-data-types/02-number/article.md index 98d0ce85..b3f847d9 100644 --- a/1-js/05-data-types/02-number/article.md +++ b/1-js/05-data-types/02-number/article.md @@ -213,13 +213,13 @@ Strange! What is it then if not `0.3`? alert( 0.1 + 0.2 ); // 0.30000000000000004 ``` -Ouch! There are more consequences than an incorrect comparison here. Imagine you're making an e-shopping site and the visitor puts `$0.10` and `$0.20` goods into their cart. The order total will be `$0.30000000000000004`. That would surprise anyone. +Ouch! Imagine you're making an e-shopping site and the visitor puts `$0.10` and `$0.20` goods into their cart. The order total will be `$0.30000000000000004`. That would surprise anyone. But why does this happen? A number is stored in memory in its binary form, a sequence of bits - ones and zeroes. But fractions like `0.1`, `0.2` that look simple in the decimal numeric system are actually unending fractions in their binary form. -In other words, what is `0.1`? It is one divided by ten `1/10`, one-tenth. In decimal numeral system such numbers are easily representable. Compare it to one-third: `1/3`. It becomes an endless fraction `0.33333(3)`. +What is `0.1`? It is one divided by ten `1/10`, one-tenth. In decimal numeral system such numbers are easily representable. Compare it to one-third: `1/3`. It becomes an endless fraction `0.33333(3)`. So, division by powers `10` is guaranteed to work well in the decimal system, but division by `3` is not. For the same reason, in the binary numeral system, the division by powers of `2` is guaranteed to work, but `1/10` becomes an endless binary fraction.