refactor promise, geneerators, global object

This commit is contained in:
Ilya Kantor 2019-02-28 00:56:39 +03:00
parent be9c5a7b5f
commit 2ee2751216
69 changed files with 900 additions and 643 deletions

View file

@ -0,0 +1,9 @@
function* pseudoRandom(seed) {
let value = seed;
while(true) {
value = value * 16807 % 2147483647
yield value;
}
};

View file

@ -0,0 +1,21 @@
describe("pseudoRandom", function() {
it("follows the formula", function() {
let generator = pseudoRandom(1);
assert.equal(generator.next().value, 16807);
assert.equal(generator.next().value, 282475249);
assert.equal(generator.next().value, 1622650073);
});
it("returns same value for the same seed", function() {
let generator1 = pseudoRandom(123);
let generator2 = pseudoRandom(123);
assert.deepEqual(generator1.next(), generator2.next());
assert.deepEqual(generator1.next(), generator2.next());
assert.deepEqual(generator1.next(), generator2.next());
});
});

View file

@ -0,0 +1,38 @@
```js run demo
function* pseudoRandom(seed) {
let value = seed;
while(true) {
value = value * 16807 % 2147483647
yield value;
}
};
let generator = pseudoRandom(1);
alert(generator.next().value); // 16807
alert(generator.next().value); // 282475249
alert(generator.next().value); // 1622650073
```
Please note, the same can be done with a regular function, like this:
```js run
function pseudoRandom(seed) {
let value = seed;
return function() {
value = value * 16807 % 2147483647;
return value;
}
}
let generator = pseudoRandom(1);
alert(generator()); // 16807
alert(generator()); // 282475249
alert(generator()); // 1622650073
```
That's fine for this context. But then we loose ability to iterate with `for..of` and to use generator composition, that may be useful elsewhere.

View file

@ -0,0 +1,34 @@
# Pseudo-random generator
There are many areas where we need random data.
One of them is testing. We may need random data: text, numbers etc, to test things out well.
In Javascript, we could use `Math.random()`. But if something goes wrong, we'd like to be able to repeat the test, using exactly the same data.
For that, so called "seeded pseudo-random generators" are used. They take a "seed", the first value, and then generate next ones using a formula. So that the same seed yields the same sequence, and hence the whole flow is easily reproducable. We only need to remember the seed to repeat it.
An example of such formula, that generates somewhat uniformly distributed values:
```
next = previous * 16807 % 2147483647
```
If we use `1` as the seed, the values will be:
1. `16807`
2. `282475249`
3. `1622650073`
4. ...and so on...
The task is to create a generator function `pseudoRandom(seed)` that takes `seed` and creates the generator with this formula.
Usage example:
```js
let generator = pseudoRandom(1);
alert(generator.next().value); // 16807
alert(generator.next().value); // 282475249
alert(generator.next().value); // 1622650073
```