669 lines
20 KiB
Ruby
669 lines
20 KiB
Ruby
# -*- coding: utf-8 -*-
|
|
#
|
|
# CFPropertyList implementation
|
|
# parser class to read, manipulate and write binary property list files (plist(5)) as defined by Apple
|
|
#
|
|
# Author:: Christian Kruse (mailto:cjk@wwwtech.de)
|
|
# Copyright:: Copyright (c) 2010
|
|
# License:: Distributes under the same terms as Ruby
|
|
|
|
module CFPropertyList
|
|
class Binary
|
|
# Read a binary plist file
|
|
def load(opts)
|
|
@unique_table = {}
|
|
@count_objects = 0
|
|
@string_size = 0
|
|
@int_size = 0
|
|
@misc_size = 0
|
|
@object_refs = 0
|
|
|
|
@written_object_count = 0
|
|
@object_table = []
|
|
@object_ref_size = 0
|
|
|
|
@offsets = []
|
|
|
|
fd = nil
|
|
if(opts.has_key?(:file)) then
|
|
fd = File.open(opts[:file],"rb")
|
|
file = opts[:file]
|
|
else
|
|
fd = StringIO.new(opts[:data],"rb")
|
|
file = "<string>"
|
|
end
|
|
|
|
# first, we read the trailer: 32 byte from the end
|
|
fd.seek(-32,IO::SEEK_END)
|
|
buff = fd.read(32)
|
|
|
|
offset_size, object_ref_size, number_of_objects, top_object, table_offset = buff.unpack "x6CCx4Nx4Nx4N"
|
|
|
|
# after that, get the offset table
|
|
fd.seek(table_offset, IO::SEEK_SET)
|
|
coded_offset_table = fd.read(number_of_objects * offset_size)
|
|
raise CFFormatError.new("#{file}: Format error!") unless coded_offset_table.bytesize == number_of_objects * offset_size
|
|
|
|
@count_objects = number_of_objects
|
|
|
|
# decode offset table
|
|
formats = ["","C*","n*","(H6)*","N*"]
|
|
@offsets = coded_offset_table.unpack(formats[offset_size])
|
|
if(offset_size == 3) then
|
|
0.upto(@offsets.count-1) { |i| @offsets[i] = @offsets[i].to_i(16) }
|
|
end
|
|
|
|
@object_ref_size = object_ref_size
|
|
val = read_binary_object_at(file,fd,top_object)
|
|
|
|
fd.close
|
|
return val
|
|
end
|
|
|
|
|
|
# Convert CFPropertyList to binary format; since we have to count our objects we simply unique CFDictionary and CFArray
|
|
def to_str(opts={})
|
|
@unique_table = {}
|
|
@count_objects = 0
|
|
@string_size = 0
|
|
@int_size = 0
|
|
@misc_size = 0
|
|
@object_refs = 0
|
|
|
|
@written_object_count = 0
|
|
@object_table = []
|
|
@object_ref_size = 0
|
|
|
|
@offsets = []
|
|
|
|
binary_str = "bplist00"
|
|
unique_and_count_values(opts[:root])
|
|
|
|
@count_objects += @unique_table.count
|
|
@object_ref_size = Binary.bytes_needed(@count_objects)
|
|
|
|
file_size = @string_size + @int_size + @misc_size + @object_refs * @object_ref_size + 40
|
|
offset_size = Binary.bytes_needed(file_size)
|
|
table_offset = file_size - 32
|
|
|
|
@object_table = []
|
|
@written_object_count = 0
|
|
@unique_table = {} # we needed it to calculate several values, but now we need an empty table
|
|
|
|
opts[:root].to_binary(self)
|
|
|
|
object_offset = 8
|
|
offsets = []
|
|
|
|
0.upto(@object_table.count-1) do |i|
|
|
binary_str += @object_table[i]
|
|
offsets[i] = object_offset
|
|
object_offset += @object_table[i].bytesize
|
|
end
|
|
|
|
offsets.each do |offset|
|
|
binary_str += Binary.pack_it_with_size(offset_size,offset)
|
|
end
|
|
|
|
binary_str += [offset_size, @object_ref_size].pack("x6CC")
|
|
binary_str += [@count_objects].pack("x4N")
|
|
binary_str += [0].pack("x4N")
|
|
binary_str += [table_offset].pack("x4N")
|
|
|
|
return binary_str
|
|
end
|
|
|
|
# read a „null” type (i.e. null byte, marker byte, bool value)
|
|
def read_binary_null_type(length)
|
|
case length
|
|
when 0 then return 0 # null byte
|
|
when 8 then return CFBoolean.new(false)
|
|
when 9 then return CFBoolean.new(true)
|
|
when 15 then return 15 # fill type
|
|
end
|
|
|
|
raise CFFormatError.new("unknown null type: #{length}")
|
|
end
|
|
protected :read_binary_null_type
|
|
|
|
# read a binary int value
|
|
def read_binary_int(fname,fd,length)
|
|
raise CFFormatError.new("Integer greater than 8 bytes: #{length}") if length > 3
|
|
|
|
nbytes = 1 << length
|
|
|
|
val = nil
|
|
buff = fd.read(nbytes)
|
|
|
|
case length
|
|
when 0 then
|
|
val = buff.unpack("C")
|
|
val = val[0]
|
|
when 1 then
|
|
val = buff.unpack("n")
|
|
val = val[0]
|
|
when 2 then
|
|
val = buff.unpack("N")
|
|
val = val[0]
|
|
when 3
|
|
hiword,loword = buff.unpack("NN")
|
|
val = hiword << 32 | loword
|
|
end
|
|
|
|
return CFInteger.new(val);
|
|
end
|
|
protected :read_binary_int
|
|
|
|
# read a binary real value
|
|
def read_binary_real(fname,fd,length)
|
|
raise CFFormatError.new("Real greater than 8 bytes: #{length}") if length > 3
|
|
|
|
nbytes = 1 << length
|
|
val = nil
|
|
buff = fd.read(nbytes)
|
|
|
|
case length
|
|
when 0 then # 1 byte float? must be an error
|
|
raise CFFormatError.new("got #{length+1} byte float, must be an error!")
|
|
when 1 then # 2 byte float? must be an error
|
|
raise CFFormatError.new("got #{length+1} byte float, must be an error!")
|
|
when 2 then
|
|
val = buff.reverse.unpack("f")
|
|
val = val[0]
|
|
when 3 then
|
|
val = buff.reverse.unpack("d")
|
|
val = val[0]
|
|
end
|
|
|
|
return CFReal.new(val)
|
|
end
|
|
protected :read_binary_real
|
|
|
|
# read a binary date value
|
|
def read_binary_date(fname,fd,length)
|
|
raise CFFormatError.new("Date greater than 8 bytes: #{length}") if length > 3
|
|
|
|
nbytes = 1 << length
|
|
val = nil
|
|
buff = fd.read(nbytes)
|
|
|
|
case length
|
|
when 0 then # 1 byte CFDate is an error
|
|
raise CFFormatError.new("#{length+1} byte CFDate, error")
|
|
when 1 then # 2 byte CFDate is an error
|
|
raise CFFormatError.new("#{length+1} byte CFDate, error")
|
|
when 2 then
|
|
val = buff.reverse.unpack("f")
|
|
val = val[0]
|
|
when 3 then
|
|
val = buff.reverse.unpack("d")
|
|
val = val[0]
|
|
end
|
|
|
|
return CFDate.new(val,CFDate::TIMESTAMP_APPLE)
|
|
end
|
|
protected :read_binary_date
|
|
|
|
# Read a binary data value
|
|
def read_binary_data(fname,fd,length)
|
|
buff = "";
|
|
buff = fd.read(length) if length > 0
|
|
return CFData.new(buff,CFData::DATA_RAW)
|
|
end
|
|
protected :read_binary_data
|
|
|
|
# Read a binary string value
|
|
def read_binary_string(fname,fd,length)
|
|
buff = ""
|
|
buff = fd.read(length) if length > 0
|
|
|
|
@unique_table[buff] = true unless @unique_table.has_key?(buff)
|
|
return CFString.new(buff)
|
|
end
|
|
protected :read_binary_string
|
|
|
|
# Convert the given string from one charset to another
|
|
def Binary.charset_convert(str,from,to="UTF-8")
|
|
return str.clone.force_encoding(from).encode(to) if str.respond_to?("encode")
|
|
return Iconv.conv(to,from,str)
|
|
end
|
|
|
|
# Count characters considering character set
|
|
def Binary.charset_strlen(str,charset="UTF-8")
|
|
return str.length if str.respond_to?("encode")
|
|
|
|
str = Iconv.conv("UTF-8",charset,str) if charset != "UTF-8"
|
|
return str.scan(/./mu).size
|
|
end
|
|
|
|
# Read a unicode string value, coded as UTF-16BE
|
|
def read_binary_unicode_string(fname,fd,length)
|
|
# The problem is: we get the length of the string IN CHARACTERS;
|
|
# since a char in UTF-16 can be 16 or 32 bit long, we don't really know
|
|
# how long the string is in bytes
|
|
buff = fd.read(2*length)
|
|
|
|
@unique_table[buff] = true unless @unique_table.has_key?(buff)
|
|
return CFString.new(Binary.charset_convert(buff,"UTF-16BE","UTF-8"))
|
|
end
|
|
protected :read_binary_unicode_string
|
|
|
|
# Read an binary array value, including contained objects
|
|
def read_binary_array(fname,fd,length)
|
|
ary = []
|
|
|
|
# first: read object refs
|
|
if(length != 0) then
|
|
buff = fd.read(length * @object_ref_size)
|
|
objects = buff.unpack(@object_ref_size == 1 ? "C*" : "n*")
|
|
|
|
# now: read objects
|
|
0.upto(length-1) do |i|
|
|
object = read_binary_object_at(fname,fd,objects[i])
|
|
ary.push object
|
|
end
|
|
end
|
|
|
|
return CFArray.new(ary)
|
|
end
|
|
protected :read_binary_array
|
|
|
|
# Read a dictionary value, including contained objects
|
|
def read_binary_dict(fname,fd,length)
|
|
dict = {}
|
|
|
|
# first: read keys
|
|
if(length != 0) then
|
|
buff = fd.read(length * @object_ref_size)
|
|
keys = buff.unpack(@object_ref_size == 1 ? "C*" : "n*")
|
|
|
|
# second: read object refs
|
|
buff = fd.read(length * @object_ref_size)
|
|
objects = buff.unpack(@object_ref_size == 1 ? "C*" : "n*")
|
|
|
|
# read real keys and objects
|
|
0.upto(length-1) do |i|
|
|
key = read_binary_object_at(fname,fd,keys[i])
|
|
object = read_binary_object_at(fname,fd,objects[i])
|
|
dict[key.value] = object
|
|
end
|
|
end
|
|
|
|
return CFDictionary.new(dict)
|
|
end
|
|
protected :read_binary_dict
|
|
|
|
# Read an object type byte, decode it and delegate to the correct reader function
|
|
def read_binary_object(fname,fd)
|
|
# first: read the marker byte
|
|
buff = fd.read(1)
|
|
|
|
object_length = buff.unpack("C*")
|
|
object_length = object_length[0] & 0xF
|
|
|
|
buff = buff.unpack("H*")
|
|
object_type = buff[0][0].chr
|
|
|
|
if(object_type != "0" && object_length == 15) then
|
|
object_length = read_binary_object(fname,fd)
|
|
object_length = object_length.value
|
|
end
|
|
|
|
retval = nil
|
|
case object_type
|
|
when '0' then # null, false, true, fillbyte
|
|
retval = read_binary_null_type(object_length)
|
|
when '1' then # integer
|
|
retval = read_binary_int(fname,fd,object_length)
|
|
when '2' then # real
|
|
retval = read_binary_real(fname,fd,object_length)
|
|
when '3' then # date
|
|
retval = read_binary_date(fname,fd,object_length)
|
|
when '4' then # data
|
|
retval = read_binary_data(fname,fd,object_length)
|
|
when '5' then # byte string, usually utf8 encoded
|
|
retval = read_binary_string(fname,fd,object_length)
|
|
when '6' then # unicode string (utf16be)
|
|
retval = read_binary_unicode_string(fname,fd,object_length)
|
|
when 'a' then # array
|
|
retval = read_binary_array(fname,fd,object_length)
|
|
when 'd' then # dictionary
|
|
retval = read_binary_dict(fname,fd,object_length)
|
|
end
|
|
|
|
return retval
|
|
end
|
|
protected :read_binary_object
|
|
|
|
# Read an object type byte at position $pos, decode it and delegate to the correct reader function
|
|
def read_binary_object_at(fname,fd,pos)
|
|
position = @offsets[pos]
|
|
fd.seek(position,IO::SEEK_SET)
|
|
return read_binary_object(fname,fd)
|
|
end
|
|
protected :read_binary_object_at
|
|
|
|
# calculate the bytes needed for a size integer value
|
|
def Binary.bytes_size_int(int)
|
|
nbytes = 0
|
|
|
|
nbytes += 2 if int > 0xE # 2 bytes int
|
|
nbytes += 2 if int > 0xFF # 3 bytes int
|
|
nbytes += 2 if int > 0xFFFF # 5 bytes int
|
|
|
|
return nbytes
|
|
end
|
|
|
|
# Calculate the byte needed for a „normal” integer value
|
|
def Binary.bytes_int(int)
|
|
nbytes = 1
|
|
|
|
nbytes += 1 if int > 0xFF # 2 byte int
|
|
nbytes += 2 if int > 0xFFFF # 4 byte int
|
|
nbytes += 4 if int > 0xFFFFFFFF # 8 byte int
|
|
nbytes += 7 if int < 0 # 8 byte int (since it is signed)
|
|
|
|
return nbytes + 1 # one „marker” byte
|
|
end
|
|
|
|
# pack an +int+ of +nbytes+ with size
|
|
def Binary.pack_it_with_size(nbytes,int)
|
|
format = ["C", "n", "N", "N"][nbytes-1]
|
|
|
|
if(nbytes == 3) then
|
|
val = [int].pack(format)
|
|
return val.slice(-3)
|
|
end
|
|
|
|
return [int].pack(format)
|
|
end
|
|
|
|
# calculate how many bytes are needed to save +count+
|
|
def Binary.bytes_needed(count)
|
|
nbytes = 0
|
|
|
|
while count >= 1 do
|
|
nbytes += 1
|
|
count /= 256
|
|
end
|
|
|
|
return nbytes
|
|
end
|
|
|
|
# create integer bytes of +int+
|
|
def Binary.int_bytes(int)
|
|
intbytes = ""
|
|
|
|
if(int > 0xFFFF) then
|
|
intbytes = "\x12"+[int].pack("N") # 4 byte integer
|
|
elsif(int > 0xFF) then
|
|
intbytes = "\x11"+[int].pack("n") # 2 byte integer
|
|
else
|
|
intbytes = "\x10"+[int].pack("C") # 8 byte integer
|
|
end
|
|
|
|
return intbytes;
|
|
end
|
|
|
|
# Create a type byte for binary format as defined by apple
|
|
def Binary.type_bytes(type,type_len)
|
|
optional_int = ""
|
|
|
|
if(type_len < 15) then
|
|
type += sprintf("%x",type_len)
|
|
else
|
|
type += "f"
|
|
optional_int = Binary.int_bytes(type_len)
|
|
end
|
|
|
|
return [type].pack("H*") + optional_int
|
|
end
|
|
|
|
# „unique” and count values. „Unique” means, several objects (e.g. strings)
|
|
# will only be saved once and referenced later
|
|
def unique_and_count_values(value)
|
|
# no uniquing for other types than CFString and CFData
|
|
if(value.is_a?(CFInteger) || value.is_a?(CFReal)) then
|
|
val = value.value
|
|
if(value.is_a?(CFInteger)) then
|
|
@int_size += Binary.bytes_int(val)
|
|
else
|
|
@misc_size += 9 # 9 bytes (8 + marker byte) for real
|
|
end
|
|
|
|
@count_objects += 1
|
|
return
|
|
elsif(value.is_a?(CFDate)) then
|
|
@misc_size += 9
|
|
@count_objects += 1
|
|
return
|
|
elsif(value.is_a?(CFBoolean)) then
|
|
@count_objects += 1
|
|
@misc_size += 1
|
|
return
|
|
elsif(value.is_a?(CFArray)) then
|
|
cnt = 0
|
|
|
|
value.value.each do |v|
|
|
cnt += 1
|
|
unique_and_count_values(v)
|
|
@object_refs += 1 # each array member is a ref
|
|
end
|
|
|
|
@count_objects += 1
|
|
@int_size += Binary.bytes_size_int(cnt)
|
|
@misc_size += 1 # marker byte for array
|
|
return
|
|
elsif(value.is_a?(CFDictionary)) then
|
|
cnt = 0
|
|
|
|
value.value.each_pair do |k,v|
|
|
cnt += 1
|
|
|
|
if(!@unique_table.has_key?(k))
|
|
@unique_table[k] = 0
|
|
@string_size += Binary.binary_strlen(k) + 1
|
|
@int_size += Binary.bytes_size_int(Binary.charset_strlen(k,'UTF-8'))
|
|
end
|
|
|
|
@object_refs += 2 # both, key and value, are refs
|
|
@unique_table[k] += 1
|
|
unique_and_count_values(v)
|
|
end
|
|
|
|
@count_objects += 1
|
|
@misc_size += 1 # marker byte for dict
|
|
@int_size += Binary.bytes_size_int(cnt)
|
|
return
|
|
elsif(value.is_a?(CFData)) then
|
|
val = value.decoded_value
|
|
@int_size += Binary.bytes_size_int(val.length)
|
|
@misc_size += val.length
|
|
@count_objects += 1
|
|
return
|
|
end
|
|
|
|
val = value.value
|
|
if(!@unique_table.has_key?(val)) then
|
|
@unique_table[val] = 0
|
|
@string_size += Binary.binary_strlen(val) + 1
|
|
@int_size += Binary.bytes_size_int(Binary.charset_strlen(val,'UTF-8'))
|
|
end
|
|
|
|
@unique_table[val] += 1
|
|
end
|
|
protected :unique_and_count_values
|
|
|
|
# Counts the number of bytes the string will have when coded; utf-16be if non-ascii characters are present.
|
|
def Binary.binary_strlen(val)
|
|
val.each_byte do |b|
|
|
if(b > 127) then
|
|
val = Binary.charset_convert(val, 'UTF-8', 'UTF-16BE')
|
|
return val.bytesize
|
|
end
|
|
end
|
|
|
|
return val.bytesize
|
|
end
|
|
|
|
# Uniques and transforms a string value to binary format and adds it to the object table
|
|
def string_to_binary(val)
|
|
saved_object_count = -1
|
|
|
|
unless(@unique_table.has_key?(val)) then
|
|
saved_object_count = @written_object_count
|
|
@written_object_count += 1
|
|
|
|
@unique_table[val] = saved_object_count
|
|
utf16 = false
|
|
|
|
val.each_byte do |b|
|
|
if(b > 127) then
|
|
utf16 = true
|
|
break
|
|
end
|
|
end
|
|
|
|
if(utf16) then
|
|
bdata = Binary.type_bytes("6",Binary.charset_strlen(val,"UTF-8")) # 6 is 0110, unicode string (utf16be)
|
|
val = Binary.charset_convert(val,"UTF-8","UTF-16BE")
|
|
|
|
val.force_encoding("ASCII-8BIT") if val.respond_to?("encode")
|
|
@object_table[saved_object_count] = bdata + val
|
|
else
|
|
bdata = Binary.type_bytes("5",val.bytesize) # 5 is 0101 which is an ASCII string (seems to be ASCII encoded)
|
|
@object_table[saved_object_count] = bdata + val
|
|
end
|
|
else
|
|
saved_object_count = @unique_table[val]
|
|
end
|
|
|
|
return saved_object_count
|
|
end
|
|
|
|
# Codes an integer to binary format
|
|
def int_to_binary(value)
|
|
nbytes = 0
|
|
nbytes = 1 if value > 0xFF # 1 byte integer
|
|
nbytes += 1 if value > 0xFFFF # 4 byte integer
|
|
nbytes += 1 if value > 0xFFFFFFFF # 8 byte integer
|
|
nbytes = 3 if value < 0 # 8 byte integer, since signed
|
|
|
|
bdata = Binary.type_bytes("1", nbytes) # 1 is 0001, type indicator for integer
|
|
buff = ""
|
|
|
|
if(nbytes < 3) then
|
|
fmt = "N"
|
|
|
|
if(nbytes == 0) then
|
|
fmt = "C"
|
|
elsif(nbytes == 1)
|
|
fmt = "n"
|
|
end
|
|
|
|
buff = [value].pack(fmt)
|
|
else
|
|
# 64 bit signed integer; we need the higher and the lower 32 bit of the value
|
|
high_word = value >> 32
|
|
low_word = value & 0xFFFFFFFF
|
|
buff = [high_word,low_word].pack("NN")
|
|
end
|
|
|
|
return bdata + buff
|
|
end
|
|
|
|
# Codes a real value to binary format
|
|
def real_to_binary(val)
|
|
bdata = Binary.type_bytes("2",3) # 2 is 0010, type indicator for reals
|
|
buff = [val].pack("d")
|
|
return bdata + buff.reverse
|
|
end
|
|
|
|
# Converts a numeric value to binary and adds it to the object table
|
|
def num_to_binary(value)
|
|
saved_object_count = @written_object_count
|
|
@written_object_count += 1
|
|
|
|
val = ""
|
|
if(value.is_a?(CFInteger)) then
|
|
val = int_to_binary(value.value)
|
|
else
|
|
val = real_to_binary(value.value)
|
|
end
|
|
|
|
@object_table[saved_object_count] = val
|
|
return saved_object_count
|
|
end
|
|
|
|
# Convert date value (apple format) to binary and adds it to the object table
|
|
def date_to_binary(val)
|
|
saved_object_count = @written_object_count
|
|
@written_object_count += 1
|
|
|
|
val = val.getutc.to_f - CFDate::DATE_DIFF_APPLE_UNIX # CFDate is a real, number of seconds since 01/01/2001 00:00:00 GMT
|
|
|
|
bdata = Binary.type_bytes("3", 3) # 3 is 0011, type indicator for date
|
|
@object_table[saved_object_count] = bdata + [val].pack("d").reverse
|
|
|
|
return saved_object_count
|
|
end
|
|
|
|
# Convert a bool value to binary and add it to the object table
|
|
def bool_to_binary(val)
|
|
saved_object_count = @written_object_count
|
|
@written_object_count += 1
|
|
|
|
@object_table[saved_object_count] = val ? "\x9" : "\x8" # 0x9 is 1001, type indicator for true; 0x8 is 1000, type indicator for false
|
|
return saved_object_count
|
|
end
|
|
|
|
# Convert data value to binary format and add it to the object table
|
|
def data_to_binary(val)
|
|
saved_object_count = @written_object_count
|
|
@written_object_count += 1
|
|
|
|
bdata = Binary.type_bytes("4", val.bytesize) # a is 1000, type indicator for data
|
|
@object_table[saved_object_count] = bdata + val
|
|
|
|
return saved_object_count
|
|
end
|
|
|
|
# Convert array to binary format and add it to the object table
|
|
def array_to_binary(val)
|
|
saved_object_count = @written_object_count
|
|
@written_object_count += 1
|
|
|
|
bdata = Binary.type_bytes("a", val.value.count) # a is 1010, type indicator for arrays
|
|
|
|
val.value.each do |v|
|
|
bdata += Binary.pack_it_with_size(@object_ref_size, v.to_binary(self));
|
|
end
|
|
|
|
@object_table[saved_object_count] = bdata
|
|
return saved_object_count
|
|
end
|
|
|
|
# Convert dictionary to binary format and add it to the object table
|
|
def dict_to_binary(val)
|
|
saved_object_count = @written_object_count
|
|
@written_object_count += 1
|
|
|
|
bdata = Binary.type_bytes("d",val.value.count) # d=1101, type indicator for dictionary
|
|
|
|
val.value.each_key do |k|
|
|
str = CFString.new(k)
|
|
key = str.to_binary(self)
|
|
bdata += Binary.pack_it_with_size(@object_ref_size,key)
|
|
end
|
|
|
|
val.value.each_value do |v|
|
|
bdata += Binary.pack_it_with_size(@object_ref_size,v.to_binary(self))
|
|
end
|
|
|
|
@object_table[saved_object_count] = bdata
|
|
return saved_object_count
|
|
end
|
|
end
|
|
end
|
|
|
|
# eof
|